Advertisement

Multi-class Posterior Atlas Formation via Unbiased Kullback-Leibler Template Estimation

  • Peter Lorenzen
  • Brad Davis
  • Guido Gerig
  • Elizabeth Bullitt
  • Sarang Joshi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3216)

Abstract

Many medical image analysis problems that involve multi-modal images lend themselves to solutions that involve class posterior density function images. This paper presents a method for large deformation exemplar class posterior density template estimation. This method generates a representative anatomical template from an arbitrary number of topologically similar multi-modal image sets using large deformation minimum Kullback-Leibler divergence registration. The template that we generate is the class posterior that requires the least amount of deformation energy to be transformed into every class posterior density (each characterizing a multi-modal image set). This method is computationally practical; computation times grows linearly with the number of image sets. Template estimation results are presented for a set of five 3D class posterior images representing structures of the human brain.

Keywords

Mutual Information Image Registration Multimodal Image Computational Anatomy Multimodal Image Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander, U., Matejic, L.: Statistical methods in computational anatomy. Statistical Methods in Medical Research 6, 267–299 (1997)CrossRefGoogle Scholar
  2. 2.
    Grenander, U., Miller, M.: Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics 56, 617–694 (1998)MATHMathSciNetGoogle Scholar
  3. 3.
    Thompson, P., Woods, R., Mega, M., Toga, A.: Mathmatical/computational challenges in creating deformable and probabilistic atlases of the human brain. Human Brain Mapping 9, 81–92 (2000)CrossRefGoogle Scholar
  4. 4.
    Hermosillo, G.: Variational Methods for Multimodal Image Matching. PhD thesis, Universite de Nice - Sophia Antipolis (2002) Google Scholar
  5. 5.
    D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: A viscous fluid model for multimodal non-rigid image registration using mutual information. Medical Image Analysis (MedIA) 7, 565–575 (2003)CrossRefGoogle Scholar
  6. 6.
    D’Agostino, E., Maes, F., Vandermeulen, D., Suetens, P.: An information theoretic approach for non-rigid image registration using voxel class probabilities. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 122–131. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Chan, H.M., Chung, A.C.S., Yu, S.C.H., Norbash, A., Wells III, W.M.: Multi-modal image registration by minimizing Kullback-Leibler distance between expected and observed joint class histograms. In: Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. 570–576 (2003)Google Scholar
  8. 8.
    Rueckert, D., Hayes, C., Studholme, C., Summers, P., Leach, M., Hawkes, D.J.: Non-rigid registration of breast mr images using mutual information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1144–1152. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Miller, M.I., Joshi, S.C.: Large deformation fluid diffeomorphism for landmark and image matching. In: Brain Warping, pp. 115–131. Academic Press, San Diego (1999)CrossRefGoogle Scholar
  10. 10.
    Gaens, T., Maes, F., Vandermeulen, D., Suetens, P.: Non-rigid multimodal image registration using mutual information. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1099–1106. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Studholme, C., Hill, D.L.G., Hawkes, D.J.: An overlap invariant entropy measure of 3d medical image alignment. Pattern Recognition, 71–86 (1998)Google Scholar
  12. 12.
    Bhatia, K.K., Hajnal, J.V., Puri, B.K., Edwards, A.D., Rueckert, D.: Consistent groupwise non-rigid registration for atlas construction. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), pp. 908–911. IEEE, Los Alamitos (2004)Google Scholar
  13. 13.
    Lorenzen, P., Joshi, S.: High-dimensional multi-modal image registration. In: Gee, J.C., Maintz, J.B.A., Vannier, M.W. (eds.) WBIR 2003. LNCS, vol. 2717, pp. 234–243. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Moon, N., van Leemput, K., Gerig, G.: Automatic brain and tumor segmentation. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2488, pp. 372–379. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated modelbased tissue classification of mr images of the brain. IEEE Transactions on Medical Imaging (TMI) 18, 897–908 (1999)CrossRefGoogle Scholar
  16. 16.
    van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated modelbased bias field correction of mr images of the brain. IEEE Transactions on Medical Imaging (TMI) 18, 885–896 (1999)CrossRefGoogle Scholar
  17. 17.
    Cocosco, C., Kollokian, V., Kwan, R.S., Evans, A.: Brainweb: Online interface to a 3d mri simulated brain database. In: NeuroImage (Proceedings of 3-rd International Conference on Functional Mapping of the Human Brain), Copenhagen, vol. 5, p. S425 (1997)Google Scholar
  18. 18.
    Davis, B., Lorenzen, P., Joshi, S.: Large deformation minimum mean squared error template estimation for computation anatomy. In: Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI), pp. 173–176. IEEE, Los Alamitos (2004)Google Scholar
  19. 19.
    Cover, T., Thomas, J.: Elements of Information Theory. John Wiley & Sons, Inc. New York (1991)MATHCrossRefGoogle Scholar
  20. 20.
    Christensen, G., Rabbit, R., Miller, M.: Deformable templates using large deformation kinematics. Transactions on Image Processing 5(10), 1435–1447 (1996)CrossRefGoogle Scholar
  21. 21.
    Joshi, S., Lorenzen, P., Gerig, G., Bullitt, E.: Structural and radiometric asymmetry in brain images. Medical Image Analysis (MedIA) 7, 155–170 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Peter Lorenzen
    • 1
  • Brad Davis
    • 1
  • Guido Gerig
    • 1
    • 2
  • Elizabeth Bullitt
    • 1
    • 3
    • 4
  • Sarang Joshi
    • 1
    • 5
  1. 1.Department of Computer ScienceUniversity of North CarolinaChapel HillUSA
  2. 2.Department of PsychiatryUniversity of North CarolinaChapel HillUSA
  3. 3.Department of SurgeryUniversity of North CarolinaChapel HillUSA
  4. 4.Department of RadiologyUniversity of North CarolinaChapel HillUSA
  5. 5.Department of Radiation OncologyUniversity of North CarolinaChapel HillUSA

Personalised recommendations