Supporting Self-Explanation in an Open-Ended Domain

  • Amali Weerasinghe
  • Antonija Mitrovic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3213)

Abstract

Self-explanation has been used successfully in teaching Mathematics and Physics to facilitate deep learning. We are interested in investigating whether self-explanation can be used in an open-ended, ill-structured domain. For this purpose, we enhanced KERMIT, an intelligent tutoring system that teaches conceptual database design. The resulting system, KERMIT-SE, supports self-explanation by engaging students in tutorial dialogues when their solutions are erroneous. The results of an evaluation study indicate that self-explanation leads to improved performance in both conceptual and procedural knowledge.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleven, V., Koedinger, K.R., Cross, K.: Tutoring Answer Explanation Fosters Learning with Understanding. In: Lajoie, S.P., Vivet, M. (eds.) AIED 1999, pp. 199–206 (1999)Google Scholar
  2. 2.
    Aleven, V., Popescu, O., Koedinger, K.R.: Towards Tutorial Dialogue to Support Self-Explanation: Adding Natural Language Understanding to a Cognitive Tutor. Artificial Intelligence in Education 12, 246–255 (2001)Google Scholar
  3. 3.
    Bunt, A., Conati, C.: Modeling Exploratory Behaviour. In: Bauer, M., Gmytrasiewicz, P.J., Vassileva, J. (eds.) Proc. of 8th Int. Conf. User Modeling, pp. 219–221 (2001)Google Scholar
  4. 4.
    Chi, M.T.H., et al.: Self-Explanations: How Students Study and Use Examples in Learning to Solve Problems. Cognitive Science 13, 145–182 (1989)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Conati, C., VanLehn, K.: Providing Adaptive Support to the Understanding of Instructional Material. In: Proc. IUI 2001, Sante Fe, New Mexico (2001)Google Scholar
  6. 6.
    Corbett, A.T.M., Trask, H.J., Scarpinatto, K.C., Handley, W.S.: A formative evaluation of the PACT Algebra II Tutor. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS 1998. LNCS, vol. 1452, pp. 374–383. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Gertner, A.S., VanLehn, K.: ANDES: A Coached Problem-Solving Environment for Physics. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 133–142. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Grasser, A.C., VanLehn, K., Rose, C.P., Jordan, P.W., Harter, D.: Intelligent Tutoring Systems with Conversational Dialogue. AI Magazine, 39–51 (Winter 2001)Google Scholar
  9. 9.
    Ohlsson, S.: Constraint-based Student Modelling. In: Greer, J.E., McCalla, G. (eds.) Student Modelling: the Key to Individualized Knowledge-based Instruction, pp. 167–189 (1994)Google Scholar
  10. 10.
    Suraweera, P., Mitrovic, A.: KERMIT: a constraint-based tutor for database modelling. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 377–387. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    VanLehn, K., et al.: Fading and Deepening: The Next steps for ANDES and other Model-Tracing Tutors. In: Gauthier, G., VanLehn, K., Frasson, C. (eds.) ITS 2000. LNCS, vol. 1839, pp. 474–483. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Weerasinghe, A., Mitrovic, A.: Enhancing learning through self-explanation. In: Kinshuk, R., Lewis, K., Akahori, R., Kemp, T., Okamoto, L., Henderson, C.-H. (eds.) Proc. ICCE 2002, pp. 244–248 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Amali Weerasinghe
    • 1
  • Antonija Mitrovic
    • 1
  1. 1.Intelligent Computer Tutoring Group, Department of Computer ScienceUniversity of Canterbury Private BagChristchurchNew Zealand

Personalised recommendations