Efficient Removal of Noisy Borders from Monochromatic Documents

  • Bruno Tenório Ávila
  • Rafael Dueire Lins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3212)


This paper presents an algorithm based on Flood Fill, Component Labelling, and Region Adjacency Graphs for removing noisy borders in monochromatic images of documents introduced by the digitalization process using automatically fed scanners. The new algorithm was tested on 20,000 images and provided better quality images and time-space performance than its predecessors including the widespread used commercial tools.


Document Image Analysis Border removal Binary Images 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ávila, B.T., Lins, R.D.: A New Algorithm for Removing Noisy Borders from Monochromatic Documents. In: Proc. of ACM-SAC 2004, pp. 1219–1225. ACM Press, Cyprus (2004)Google Scholar
  2. 2.
    Ávila, B.T., Lins, R.D.: Removing Noise Borders from Monochromatic Scanned Documents (in preparation)Google Scholar
  3. 3.
    Baird, H.S.: Document image defect models and their uses. In: Proc. Snd Int. Conf. on Document Analysis and Recognition, Japan, pp. 62–67. IEEE Comp. Soc. Los Alamitos (1993)Google Scholar
  4. 4.
    Berger, M.: Computer Graphics with Pascal. Addison-Wesley, Reading (1986)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)MATHGoogle Scholar
  6. 6.
    Fan, K.C., Wang, Y.K., Lay, T.R.: Marginal noise removal of document images. Patt. Recog. 35, 2593–2611 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    O’Gorman, L., Kasturi, R.: Document Image Analysis, IEEE Computer Society Executive Briefing (1997)Google Scholar
  8. 8.
    Kanungo, T., Haralick, R.M., Phillips, I.: Global and local document degradation models. In: Proc. Snd Int. Conf. Doc. Analysis and Recognition, pp. 730–734 (1993)Google Scholar
  9. 9.
    Le, D.X.: Automated borders detection and adaptive segmentation for binary document images. National Library of Medicine, http://archive.nlm.nih.gov/pubs/le/twocols/twocols.php
  10. 10.
    Lins, R.D., Guimarães Neto, M.S., França Neto, L.R., Rosa, L.G.: An Environment for Processing Images of Historical Documents. Microprocessing & Microprogramming, pp. 111–121. North-Holland, Amsterdam (1995)Google Scholar
  11. 11.
    Lins, R.D., Machado, D.S.A.: A Comparative Study of File Formats for Image Storage and Transmission. Journal of Electronic Imaging 13(1), 175–183 (2004)CrossRefGoogle Scholar
  12. 12.
    Mello, C.A.B., Lins, R.D.: Image Segmentation of Historical Documents. In: Visual 2000, Mexico (August 2000)Google Scholar
  13. 13.
    Shapiro, L.G., Stockman, G.C.: Computer Vision (March 2000), http://www.cse.msu.edu/~stockman/Book/book.html
  14. 14.
    BlackIce Document Imaging SDK 10. BlackIce Software Inc., http://www.blackice.com/
  15. 15.
    ClearImage 5. Inlite Research Inc., http://www.inliteresearch.com
  16. 16.
  17. 17.
    Leadtools 13. Leadtools Inc., http://www.leadtools.com
  18. 18.
    ScanFix Bitonal Image Optimizer 4.21. TMS Sequoia, http://www.tmsinc.com
  19. 19.
    Skyline Tools Corporate Suite 7. Skyline Tools Imaging, http://www.skylinetools.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bruno Tenório Ávila
    • 1
  • Rafael Dueire Lins
    • 1
  1. 1.Universidade Federal de PernambucoRecifeBrazil

Personalised recommendations