Advertisement

Dynamic Pedobarography Transitional Objects by Lagrange’s Equation with FEM, Modal Matching and Optimization Techniques

  • Raquel Ramos Pinho
  • João Manuel R. S. Tavares
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3212)

Abstract

This paper presents a physics-based approach to obtain 2D or 3D dynamic pedobarography transitional objects from two given images (2D or 3D). With the used methodology, we match nodes of the input objects by using modal matching, improved with optimization techniques, and solve the Lagrangian dynamic equilibrium equation to obtain the intermediate shapes. The strain energy involved can also be analysed and used to quantify local or global deformations.

Keywords

Modal Match Mode Superposition Global Deformation Interpolation Matrix Transitional Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tavares, J., Barbosa, J., Padilha, A.J.: Matching Image Objects in Dynamic Pedobarography. In: 11th Portuguese Conference on Pattern Recognition, Porto, Portugal (2000)Google Scholar
  2. 2.
    Tavares, J.: Análise de Movimento de Corpos Deformáveis usando Visão Computacional, Tese de Doutoramento, FEUP (2000) Google Scholar
  3. 3.
    Pinho, R., Tavares, J.: Resolution of the Dynamic Equilibrium Equation to Simulate Objects’ Movement/Deformation. In: 7th Portuguese Conference on Biomedical Engineering, Lisboa, Portugal (2003)Google Scholar
  4. 4.
    Pinho, R., Tavares, J.: Morphing of Image Represented Objects by a Physical Methodology. In: 19th ACM Symposium on Applied Computing, Nicosia, Cyprus (2004)Google Scholar
  5. 5.
    Bastos, L., Tavares, J.: Matching of Objects Nodal Points Improvement using Optimization. In: Inverse Problems, Design and Optimization Symposium, Rio de Janeiro, Brasil (2004)Google Scholar
  6. 6.
    Terzopoulos, D., Witkin, A., Kass, M.: Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion. Artificial Intelligence Journal 36, 91–123 (1988)zbMATHCrossRefGoogle Scholar
  7. 7.
    Terzopoulos, D., Metaxas, D.: Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(7), 703–714 (1991)CrossRefGoogle Scholar
  8. 8.
    Maciel, J.L., Costeira, J.P.: A Global Solution to Sparse Correspondence Problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(2), 187–199 (2003)CrossRefGoogle Scholar
  9. 9.
    Shapiro, L.S., Brady, J.M.: Feature-Based Correspondence: An Eigenvector Approach. Image and Vision Computing 10, 283–288 (1992)CrossRefGoogle Scholar
  10. 10.
    Sclaroff, S., Pentland, A.: Modal Matching for Correspondence and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(6), 545–561 (1995)CrossRefGoogle Scholar
  11. 11.
    Sclaroff, S.: Modal Matching: A Method for Describing, Comparing and Manipulating Digital Signals, PhD Thesis, MIT (1995) Google Scholar
  12. 12.
    Tavares, J., Barbosa, J., Padilha, A.: Determinação da Correspondência entre Objectos utilizando Modelação Física, 9º Encontro Português de Computação Gráfica, Marinha Grande, Portugal (2000) Google Scholar
  13. 13.
    Cook, R., Malkus, D., Plesha, M.: Concepts and Applications of Finite Element Analysis. John Wiley & Sons Inc., Chichester (1989)zbMATHGoogle Scholar
  14. 14.
    Bathe, K.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996)Google Scholar
  15. 15.
    Tavares, J., Barbosa, J., Padilha, A.: Apresentação De Um Banco De Desenvolvimento E Ensaio Para Objectos Deformáveis. RESI - Revista Electrónica de Sistemas de Informação 1(1) (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Raquel Ramos Pinho
    • 1
  • João Manuel R. S. Tavares
    • 1
    • 2
  1. 1.FEUP – Faculdade de Engenharia da Universidade do PortoLOME – Laboratório de Óptica e Mecânica Experimental 
  2. 2.DEMEGI – Departamento de EngenhariaMecânica e Gestão IndustrialPORTOPortugal

Personalised recommendations