A Quantification Tool to Analyse Stained Cell Cultures

  • E. Glory
  • A. Faure
  • V. Meas-Yedid
  • F. Cloppet
  • Ch. Pinset
  • G. Stamon
  • J-Ch. Olivo-Marin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3212)

Abstract

In order to assess the efficiency of culture media to grow cells or the capacity of drugs to be toxic, we elaborated a method of cell quantification based on image processing. A validated approach makes segment on stained nuclei by thresholding the histogram of the best adapted color component. Next, we focus our attention on the classification methods able to distinguish isolated and aggregated nuclei because the aggregation of nuclei reveals a particuliar cell function. Two decision trees have been designed to consider the different shape features of two types of nuclei : coming a) from bone marrow and b) from immature muscular cell cultures. The most relevant characteristics are the concavity, the circularity and the area of binary objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bamford, P.: Segmentation of cell images with an application to cervical cancer screening. PhD thesis - University of Queenland (1999) Google Scholar
  2. 2.
    Bitter, E., Benassarou, A., Lucas, L., Elias, L., Tchelidze, P., Ploton, D., O’Donohue, M.-F.: Analyse et Modélisation ‘a l’Intérieur de Cellules Vivantes dans des Images 4D. In: R.F.I.A. 14ème Congrès Francophone AFRIF-AFIA, Toulouse, France, pp. 845–854 (2004)Google Scholar
  3. 3.
    Brenner, J.J., Necheles, T.F., Bonacossa, I.A., Necheles, T.F., Fristensky, R., Weintraub, B.A., Neurath, P.W.: Scene segmentation techniques for the analysis of routine bone marrow smears from acute lymphoblastic leukaemia patients. Journal of Histochemistry and Cytochemistry 25(7), 601–613 (1977)CrossRefGoogle Scholar
  4. 4.
    Cloppet, F., Oliva, J.M., Stamon, G.: Angular Bisector Network, a Simplified Generalized Voronoï Diagram: Application to Processing Complex Intersections in Biomedical Images. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(1), 120–128 (2000)CrossRefGoogle Scholar
  5. 5.
    Fernandez, G., Kunt, M., Zryd, J.-P.: Multi-spectral based cell segmentation and analysis. In: Proc. of the Workshop on Physics-based Modeling in Computer Vision, Cambridge, USA, pp.166–172 (1995)Google Scholar
  6. 6.
    Gonzalez, R.C., Wintz, P.: Digital Image Processing, pp. 122–125, 392-394 Addison Wesley, Reading (1987)Google Scholar
  7. 7.
    Rasband, W.: ImageJ, Version 1.31s. National Institues of Health, USA (2004), http://rsb.info.nih.gov/ij/
  8. 8.
    Lezoray, O., Elmoataz, A., Cardot, H., Revenu, M.: A.R.T.I.C: Un système automatique de tri cellulaire par Analyse d’images. Vision Interface, 312–319 (1999)Google Scholar
  9. 9.
    Meas-Yedid, V., Glory, E., Pinset, C., Stamon, G., Olivo-Marin, J-C.: Automatic color space selection for biological image segmentation. In: International Conference of Pattern Recognition (2004) to appear Google Scholar
  10. 10.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  11. 11.
    Ridler, T.W., CalvardClarke, S.: Picture thresholding using an iterative selection method. IEEE Trans. System, Man and Cybernetics 8, 630–632 (1978)CrossRefGoogle Scholar
  12. 12.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, pp. 13–20. Accademic Press, San Diego (1999)Google Scholar
  13. 13.
    Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)CrossRefGoogle Scholar
  14. 14.
    Xie, X., Mirmehdi, M.: Level-set based geometric color snakes with region support. In: Proc. of International Conference on Image Processing, vol. 2, pp. 153–156 (2003)Google Scholar
  15. 15.
    Zimmer, C., Labruyère, E., Meas-Yedid, V., Guilèn, N., Olivo-Marin, J.-C.: Improving active contours for segmentation and tracking of motile cells in videomicroscopy. In: 16th International Conference on Pattern Recognition, vol. 2, pp. 286–289 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. Glory
    • 1
    • 2
    • 3
  • A. Faure
    • 1
  • V. Meas-Yedid
    • 2
  • F. Cloppet
    • 1
  • Ch. Pinset
    • 3
  • G. Stamon
    • 1
  • J-Ch. Olivo-Marin
    • 2
  1. 1.Laboratoire SIP-CRIP5Université Paris 5ParisFrance
  2. 2.Laboratoire d’Analyse d’Images QuantitativeInstitut PasteurParisFrance
  3. 3.Celogos SAParisFrance

Personalised recommendations