Online Sauter Diameter Measurement of Air Bubbles and Oil Drops in Stirred Bioreactors by Using Hough Transform

  • L. Vega-Alvarado
  • M. S. Cordova
  • B. Taboada
  • E. Galindo
  • G. Corkidi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3212)


Industrial production of important fermentation products such as enzymes, antibiotics, and aroma compounds, amongst others, involves a multiphase dispersion. Therefore, it is important to determine the influence of the bioreactor operational parameters (stirring speed, impeller type, power drawn, etc.) under which the culture achieves the highest yields. The automatic on-line analysis of multiphase dispersions occurring in microbial cultures in mechanically stirred bioreactors, presents a number of important problems for image acquisition and segmentation, including heterogeneous transparency of moving objects of interest and background, blurring, overlapping and artifacts. In this work, a Hough transform based method was implemented and tested. Results were compared with those obtained manually by the expert. We concluded that using this method, the evaluation of size distributions of air bubbles and oil drops in a mechanically stirred bioreactor was performed in a more efficient and less time-consuming way than others semiautomatic or manual methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cordova, A.M.S., Sanchez, A., Serrano, C.L., Galindo, E.: Oil and Fungal Biomass Dispersion in Stirred Tank Containing a Simulated Fermentation Broth. J. Chem.Technol. Biotechnol. 76, 1101–1106 (2001)CrossRefGoogle Scholar
  2. 2.
    Chen, H.T., Middleman, S.: Drop Size Distributions in Stirred Liquid-liquid Systems. AIChE J 13(5), 989–998 (1967)CrossRefGoogle Scholar
  3. 3.
    Varley, J.: Submerged.: Gas-liquid jets: bubble size prediction. Chemical Engineering Science 50(5), 901–905 (1995)CrossRefGoogle Scholar
  4. 4.
    Lage, P.L., Esposito, R.O.: Experimental determination of bubble size distributions in bubble columns: prediction of mean bubble diameter and gas hold up. Powder Technology 101, 142–150 (1999)CrossRefGoogle Scholar
  5. 5.
    Chen, F., Gomez, C.O., Finch, J.A.: Technical note bubble size measurement in flotation machines. Minerals Engineering 14(4), 427–432 (2001)CrossRefGoogle Scholar
  6. 6.
    Lou, R., Song, Q., Yang, X.Y., Wang, Z.: A three-dimensional photographic method for measurement of phase distribution in dilute bubble flow. Experimentes In Fluids 32, 116–120 (2002)CrossRefGoogle Scholar
  7. 7.
    Malysa, K., Cymbalisty, L., Czarnecki, J., Masliyah, J.: A method of visualization and characterization of aggregate flow inside a separation vessel. Part 1. Size, shape and rise velocity of the aggregates. International Journal of Mineral Processing 55, 171–188 (1999)CrossRefGoogle Scholar
  8. 8.
    Zhou, Z., Xu, Z., Masliyah, J., Kasongo, T., Christendat, D., Hyland, K., Kizor, T., Cox, D.: Application of on-line visualization to flotation system. In: Proc. Of the 32nd Annual Operator’s Conferences of the Canadian Mineral processors, pp. 120–137 (2000)Google Scholar
  9. 9.
    Pan, X.-H., Lou, R., Yang, X.-Y., And Yang, H.-J.: Three-dimensional particle image tracking for dilute particle-liquid flows in a pipe. Measurements Science And Technology 13, 1206–1216 (2002)CrossRefGoogle Scholar
  10. 10.
    Schäfer, R., Merten, C., Eigenberger, G.: Bubble size distribution in bubble column reactor under industrial conditions. Experimental Thermal And Fluid Science 26, 595–604 (2002)CrossRefGoogle Scholar
  11. 11.
    So, S., Morikita, H., Takagi, S., Matsumoto, Y.: Laser doppler velocimetry measurement of turbulent bubbly chanel flow. Experimentes in Fluids 33, 135–142 (2002)Google Scholar
  12. 12.
    Takamasa, T., Goto, T., Hibiki, T., Ishii, M.: Experimental study of interfacial area transport of bubbly flow in small-diameter tube. International Journal of Multiphase Flow 29, 395–409 (2003)MATHCrossRefGoogle Scholar
  13. 13.
    Taboada, B., Larralde, P., Brito, T., Vega -Alvarado, L., Díaz, R., Galindo, E., Corkidi, G.: Images Acquisition of a Multiphase Dispersions in Fermentation Processes. Journal of Applied Research and Technology 1(1), 78–84 (2003)Google Scholar
  14. 14.
    Image-Pro Plus V.4.1, Reference Guide for Windows (Media Cybernetics,EUA) (1999)Google Scholar
  15. 15.
    Hough, P.V.C.: Methods and means for recognizing complex patterns, U.S Patent 3, 069, 654 (1962)Google Scholar
  16. 16.
    Kass, W.A., Terzopoulos, D.: Snakes: Active contour models. In: Porceed. Of first International Conf. On Comp. Vis. pp. 259–269 (1987)Google Scholar
  17. 17.
    Lim, K., Xin, K., Hong, G.: Detection and estimation of circular segments. Pattern Recog. Lett. 16, 627–636 (1995)CrossRefGoogle Scholar
  18. 18.
    Pla, F.: Recognition of partial circular shapes from segmented contours. Comp. Vis. and Imag. Underst. 63(2), 334–343 (1996)CrossRefGoogle Scholar
  19. 19.
    Shen, L., Song, X., Iguchi, M., Yamamoto, F.: A method for recognizing particles in overlapped particle images. Pattern Recog. Lett. 21, 21–30 (2000)CrossRefGoogle Scholar
  20. 20.
    Xu, L., Oja, E., Kultanena, P.: A new curve detection method: Randomized hough transform (rht). Pattern Recognition Letters 11, 331–338 (1990)MATHCrossRefGoogle Scholar
  21. 21.
    Pacek, C., Man, C., Nienow, A.: Chemical Engineering. Science 53(11), 2005–2011 (1998)Google Scholar
  22. 22.
    Lucatero, S., Larralde-Cornona, C., Corkidi, G., Galindo, E.: Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology. Biotechnol. Prog. 19, 285–292 (2003)CrossRefGoogle Scholar
  23. 23.
    Serrano-Carreón, L., Flores, C., Galindo, E.: γ-Decalactone Production by Trichoderma harzianum in Stirred Bioreactors. Biotechnol. Prog. 13, 205–208 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • L. Vega-Alvarado
    • 1
  • M. S. Cordova
    • 2
  • B. Taboada
    • 1
  • E. Galindo
    • 2
  • G. Corkidi
    • 1
  1. 1.Centro de Ciencias Aplicadas y Desarrollo TecnológicoUNAMMéxico D.F
  2. 2.Instituto de BiotecnologíaUNAMCuernavacaMéxico

Personalised recommendations