Advertisement

Multiresolution Approach to “Visual Pattern” Partitioning of 3D Images

  • Raquel Dosil
  • Xosé R. Fdez-Vidal
  • Xosé M. Pardo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)

Abstract

This paper deals with the problem of low level representation of 3D image contents. The presented solution makes use of multiresolution techniques to recover the so-called visual patterns or integral features that form images. It consists of decomposing the image into a set of elementary image features, representing frequency channels, using a filter bank, and grouping them by means of clustering analysis. The method introduces a novel design of the bank of oriented scaled filters. In addition, a new measure of dissimilarity between pairs of features is applied to the hierarchical clustering technique.

Keywords

Filter Bank Visual Pattern Dissimilarity Measure Filter Response Hierarchical Cluster Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kovesi, P.D.: Invariant Measures of Image Features from Phase Information, The University or Western Australia (1996), http://www.cs.uwa.edu.au/pub/robvis/theses/PeterKovesi/
  2. 2.
    Rodríguez-Sánchez, R., García, J.A., Fdez-Valdivia, J., Fdez-Vidal, X.R.: The RGFF Representational Model: A System for the Automatically Learned Partition of Visual Patterns in Digital Images. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 1044–1073 (1999)CrossRefGoogle Scholar
  3. 3.
    Field, D.J.: Scale–Invariance and self-similar “wavelet” Transforms: An Analysis of Natural Scenes and Mammalian Visual Systems. In: Farge, M., Hunt, J.C.R., Vassilicos, J.C. (eds.) Wavelets, fractals and Fourier Transforms, pp. 151–193. Clarendon Press, Oxford (1993)Google Scholar
  4. 4.
    Chamorro-Martínez, J., Fdez-Valdivia, J.A., García, J.A., Martínez-Baena, J.: A frequency Domain Approach for the Extraction of Motion Patterns. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Hong Kong, vol. 3, pp. 165–168 (2003)Google Scholar
  5. 5.
    Yu, W., Sommer, G., Daniilidis, K.: Three dimensional orientation signatures with conic kernel. Image and Vision Computing 21(5), 447–458 (2003)CrossRefGoogle Scholar
  6. 6.
    Granlund, G.H., Knutsson, H.: Signal Processing for Computer Vision. Kluwer Academic Publishers, Boston (1995)Google Scholar
  7. 7.
    Pal, N.R., Biswas, J.: Cluster Validation Using graph Theoretic Concepts. Pattern Recognition 30(6), 847–857 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Raquel Dosil
    • 1
  • Xosé R. Fdez-Vidal
    • 2
  • Xosé M. Pardo
    • 1
  1. 1.Dep. de Electrónica e ComputaciónUniv. de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Escola Politécnica SuperiorUniv. de Santiago de CompostelaLugoSpain

Personalised recommendations