Advertisement

Alpha-Stable Noise Reduction in Video Sequences

  • Mohammed El Hassouni
  • Hocine Cherifi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3211)

Abstract

In this paper, a nonlinear motion-compensated filter is described for removing α-stable noise from video sequences. To address this problem, we propose a spatio-temporal adaptive weighted myriad and l p -norm filters. Prior to filtering, motion compensation is performed by using a block-matching algorithm with p-norm matching error function. Then, we apply the proposed filter to the reconstructed frames. The effective performance of the proposed scheme is illustrated through computer simulations involving the filtering of video sequences.

Keywords

Video Sequence Motion Estimation Motion Compensation Stable Distribution Impulsive Noise 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, S.D., Ra, J.B.: Efficient block-based video encoder embedding a wiener filter for noisy video sequences. Journal of Visual Communications and Image Representation 14, 22–40 (2003)Google Scholar
  2. 2.
    Srivastava, A.B., Lee, E.P., Simoncelli, S.-C.: On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision 18, 17–33 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Tanrikulu, O., Constantindes, A.G.: Least-mean Kurtosis: A novel higherorder statistics based adaptive filtering algorithm. Electronics Letters 30(3), 189–190 (1994)CrossRefGoogle Scholar
  4. 4.
    El Hassouni, M., Cherifi, H.: Noise Reduction in Color Video Sequences Using Multichannel Motion-Compensated L-Filter. In: Proc. of ICIP 2003, Barcelona, Spain, September 14-17 (2003)Google Scholar
  5. 5.
    Gonzales, J.G., Arce, G.R.: Zero-order statistics: a signal processing framework for very impulsive processes. In: Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics, Banff, Canada, July 1997, pp. 254–258 (1997)Google Scholar
  6. 6.
    Shao, M., Nikias, C.L.: Signal processing with fractionnal lower order moments: Stable processes and their applications. Proc. IEEE 81, 986–1009 (1993)CrossRefGoogle Scholar
  7. 7.
    Aydin, G., Arikan, O., Cetin, E.: Robust adaptive filtering algorithms for α- stable random processes. IEEE Trans. On Circuits and Systems II 46(2), 198–202 (1999)MATHCrossRefGoogle Scholar
  8. 8.
    Kidmose, P.: Adaptive filtering for non-Gaussian noise processes. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing, ICASSP 2000, pp. 424–427 (2000)Google Scholar
  9. 9.
    Hamza, B., Krim, H.: Image denoising: A nonlinear robust statistical approach. IEEE Trans. on Signal Processing 49(12) (December 2001)Google Scholar
  10. 10.
    El Hassouni, M., Cherifi, H.: A 2-D adaptive least lp-norm filter for impulsive noise Cancellation in still images. In: Proc. of ISSPA 2003, Paris, France, July 1-4 (2003)Google Scholar
  11. 11.
    Brailean, J.C., Kleihorst, R.P., Efstratiadis, S., Katsaggelos, A.K., Lagendijk, R.L.: Noise reduction filters for dynamic image sequences: A review. Proc. IEEE 83, 1270–1291 (1995)CrossRefGoogle Scholar
  12. 12.
    Boo, K.J., Bose, N.K.: A motion-compensated spatio-temporal filter for image sequences with signal dependent noise. IEEE Trans. Cir. and Syst. for Vid. Tech. 8(3), 287–298 (1998)CrossRefGoogle Scholar
  13. 13.
    Sayrol, E.: Modelling the displaced frame difference as an alpha-stable distribution. In: IEEE International Conference on Image Processing, Santa Barbara, CA, October 1997, vol. 2, pp. 195–198 (1997)Google Scholar
  14. 14.
    Gonzalez, J.G., Arce, G.R.: Weighted myriad filters: A robust filtering framework derived from alpha-stable distributions. In: Proc. of the IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Atlanta, GA, May 1996, vol. 5, pp. 2833–2836 (1996)Google Scholar
  15. 15.
    Kuruoglu, E.E., Rayner, P.J.W., Fitzgerald, W.J.: Least lp-norm impulsive noise cancellation with polynomial filters. Signal Processing 69, 1–14 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mohammed El Hassouni
    • 1
  • Hocine Cherifi
    • 1
  1. 1.LIRSA, Faculty of science MirandeUniversity of BourgogneDijon cedexFrance

Personalised recommendations