Parameterized Model Checking of Ring-Based Message Passing Systems

  • E. Allen Emerson
  • Vineet Kahlon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3210)

Abstract

The Parameterized Model Checking Problem (PMCP) is to decide whether a temporal property holds for a uniform family of systems, Un, comprised of finite, but arbitrarily many, copies of a template process U. Unfortunately, it is undecidable in general [3]. In this paper, we consider the PMCP for systems comprised of processes arranged in a ring that communicate by passing messages via tokens whose values can be updated at most a bounded number of times. Correctness properties are expressed using the stuttering-insensitive linear time logic LTL∖X. For bidirectional rings we show how to reduce reasoning about rings with an arbitrary number of processes to rings with up to a certain finite cutoff number of processes. This immediately yields decidability of the PMCP at hand. We go on to show that for unidirectional rings small cutoffs can be achieved, making the decision procedure provably efficient. As example applications, we consider protocols for the leader election problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P., Boujjani, A., Jonsson, B., Nilsson, M.: Handling global conditions in parameterized systems verification. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633. Springer, Heidelberg (1999)Google Scholar
  2. 2.
    Abdulla, P.A., Jonsson, B.: On the existence of network invariants for verifying parameterized systems. In: Olderog, E.-R., Steffen, B. (eds.) Correct System Design. LNCS, vol. 1710, pp. 180–197. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Information Processing Letters 15, 307–309 (1986)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Arons, T., Pnueli, A., Ruah, S.: ParameterizedVerification withAutomatically Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about Networks with Many Identical Finite State Processes. Information and Control 81(1), 13–31 (1989)MATHMathSciNetGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Jha, S.: Verifying Parameterized Networks using Abstraction and Regular Languages. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 395–407. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    Emerson, E.A., Kahlon, V.: Reducing Model Checking of the Many to the Few. In: CADE-17. LNCS. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Emerson, E.A., Kahlon, V.: Model checking large-scale and parameterized resource allocation systems. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, p. 251. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Emerson, E.A., Kahlon, V.: Rapid parameterized model checking of snoopy cache coherence protocols. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 144–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Emerson, E.A., Kahlon, V.: Model Checking Guarded Protocols. LICS (2003)Google Scholar
  11. 11.
    Emerson, E.A., Namjoshi, K.S.: Reasoning about Rings. In: POPL, pp. 85–94 (1995)Google Scholar
  12. 12.
    Emerson, E.A., Namjoshi, K.S.: Automatic Verification of Parameterized Synchronous Systems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)Google Scholar
  13. 13.
    German, S.M., Sistla, A.P.: Reasoning about Systems with Many Processes. J. ACM 39(3) (July 1992)Google Scholar
  14. 14.
    Khurshan, R.P., McMillan, L.: A Structural Induction Theorem for Processes. In: PODC, pp. 239–247 (1989)Google Scholar
  15. 15.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)MATHGoogle Scholar
  16. 16.
    Shannon, C.E.: A Universal Turing Machine with Two Internal States. Automata Studies, pp. 157–165. Princeton University Press, Princeton (1956)Google Scholar
  17. 17.
    Suzuki, I.: Proving properties of a ring of finite state systems. IPL 28, 213–314 (1988)MATHCrossRefGoogle Scholar
  18. 18.
    Wolper, P., Lovinfosse, V.: Verifying Properties of Large Sets of Processes with Network Invariants. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • E. Allen Emerson
    • 1
  • Vineet Kahlon
    • 1
  1. 1.Department of Computer SciencesThe University of Texas at AustinAustinUSA

Personalised recommendations