Advertisement

Goal-Directed Methods for Łukasiewicz Logic

  • George Metcalfe
  • Nicola Olivetti
  • Dov Gabbay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3210)

Abstract

In this paper we present goal-directed deduction methods for Łukasiewicz infinite-valued logic Ł giving logic programming style algorithms which both have a logical interpretation and provide a suitable basis for implementation. We begin by considering a basic version with connections to calculi for other logics, then make refinements to obtain greater efficiency and termination properties, and to deal with further connectives and truth constants. We finish by considering applications of these algorithms to fuzzy logic programming.

Keywords

Łukasiewicz Logics Fuzzy Logics Goal-Directed Methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguzzoli, S., Ciabattoni, A.: Finiteness in infinite-valued logic. Journal of Logic, Language and Information 9(1), 5–29 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chang, C.C.: Algebraic analysis of many-valued logics. Transactions of the American Mathematical Society 88, 467–490 (1958)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many- Valued Reasoning. In: Trends in Logic, vol. 7, Kluwer, Dordrecht (1999)Google Scholar
  4. 4.
    Gabbay, D., Olivetti, N.: Goal-directed Proof Theory. Kluwer, Dordrecht (2000)MATHGoogle Scholar
  5. 5.
    Gabbay, D., Olivetti, N.: Goal oriented deductions. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd edn., vol. 9, pp. 199–285. Kluwer, Dordrecht (2002)Google Scholar
  6. 6.
    Hähnle, R.: Automated Deduction in Multiple-Valued Logics. Oxford University Press, Oxford (1993)MATHGoogle Scholar
  7. 7.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)MATHGoogle Scholar
  8. 8.
    Klawonn, F., Kruse, R.: A Łukasiewicz logic based Prolog. Mathware & Soft Computing 1(1), 5–29 (1994)MathSciNetGoogle Scholar
  9. 9.
    Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. Comptes Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe III 23 (1930)Google Scholar
  10. 10.
    McNaughton, R.: A theorem about infinite-valued sentential logic. Journal of Symbolic Logic 16(1), 1–13 (1951)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Goal-directed calculi for gödel-dummett logics. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 413–426. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM TOCL (2004, To appear)Google Scholar
  13. 13.
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals of Pure and Applied Logic 51, 125–157 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theoretical Computer Science 52(1-2), 145–153 (1987)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Mundici, D.: The logic of Ulam’s game with lies. In: Bicchieri, C., Dalla Chiara, M.L. (eds.) Knowledge, belief and strategic interaction, pp. 275–284. Cambridge University Press, Cambridge (1992)Google Scholar
  16. 16.
    Mundici, D., Olivetti, N.: Resolution and model building in the infinite-valued calculus of Łukasiewicz. Theoretical Computer Science 200(1–2), 335–366 (1998)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Olivetti, N.: Tableaux for _Lukasiewicz infinite-valued logic. Studia Logica 73(1), 81–111 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Pym, D.J., Harland, J.A.: The uniform proof-theoretic foundation of linear logic programming. Journal of Logic and Computation 4(2), 175–206 (1994)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Subrahmanian, V.S.: Intuitive semantics for quantitative rule sets. In: Kowalski, R., Bowen, K. (eds.) Logic Programmin, Proceedings of the Fifth International Conference and Symposium, pp. 1036–1053 (1988)Google Scholar
  20. 20.
    Vojt´as, P.: Fuzzy logic programming. Fuzzy Sets and Systems 124, 361–370 (2001)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Wagner, H.: A new resolution calculus for the infinite-valued propositional logic of Łukasiewicz. In: Caferra, R., Salzer, G. (eds.) Int. Workshop on First-Order Theorem Proving, pp. 234–243 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • George Metcalfe
    • 1
  • Nicola Olivetti
    • 2
  • Dov Gabbay
    • 1
  1. 1.Department of Computer ScienceKing’s College LondonStrand, LondonUK
  2. 2.Department of Computer ScienceUniversity of TurinTurinItaly

Personalised recommendations