Reconfigurable Instruction Set Extension for Enabling ECC on an 8-Bit Processor

  • Sandeep Kumar
  • Christof Paar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3203)


Pervasive networks with low-cost embedded 8-bit processors are set to change our day-to-day life. Public-key cryptography provides crucial functionality to assure security which is often an important requirement in pervasive applications. However, it has been the hardest to implement on constraint platforms due to its very high computational requirements. This contribution describes a proof-of-concept implementation for an extremely low-cost instruction set extension using reconfigurable logic, which enables an 8-bit micro-controller to provide full size elliptic curve cryptography (ECC) capabilities. Introducing full size public-key security mechanisms on such small embedded devices will allow new pervasive applications. We show that a standard compliant 163-bit point multiplication can be computed in 0.113 sec on an 8-bit AVR micro-controller running at 4 Mhz with minimal extra hardware, a typical representative for a low-cost pervasive processor. Our design not only accelerates the computation by a factor of more than 30 compared to a software-only solution, it also reduces the code-size, data-RAM and power requirements.


Elliptic Curve Elliptic Curf Elliptic Curve Cryptography Elliptic Curve Digital Signature Algorithm Pervasive Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ANSI X9.62-1999. The Elliptic Curve Digital Signature Algorithm. Technical report, ANSI (1999)Google Scholar
  2. 2.
    Bailey, D.V., Paar, C.: Optimal Extension Fields for Fast Arithmetic in Public- Key Algorithms. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 472–485. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. London Mathematical Society Lecture Notes Series, vol. 265. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  4. 4.
    Brown, M., Cheung, D., Hankerson, D., Hernandez, J.L., Kirkup, M., Menezes, A.: PGP in Constrained Wireless Devices. In: Proceedings of the 9th USENIX Security Symposium (August 2000)Google Scholar
  5. 5.
    Chung, J.W., Sim, S.G., Lee, P.J.: Fast Implementation of Elliptic Curve Defined over GF(pm) on CalmRISC with MAC2424 Coprocessor. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 57–70. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Ernst, M., Jung, M., Madlener, F., Huss, S., Blümel, R.: A Reconfigurable System on Chip Implementation for Elliptic Curve Cryptography over GF(2n). In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 381–399. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Guajardo, J., Bluemel, R., Krieger, U., Paar, C.: Efficient Implementation of Elliptic Curve Cryptosystems on the TI MSP430x33x Family of Microcontrollers. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 365–382. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Handschuh, H., Paillier, P.: Smart Card Crypto-Coprocessors for Public-Key Cryptography. In: Quisquater, J.-J., Schneier, B. (eds.) Proceedings of the The International Conference on Smart Card Research and Applications, pp. 372–379. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Hankerson, D., López Hernandez, J., Menezes, A.: Software Implementation of Elliptic Curve Cryptography Over Binary Fields. In: Koç, Ç., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, p. 1. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Hasegawa, T., Nakajima, J., Matsui, M.: A Practical Implementation of Elliptic Curve Cryptosystems over GF(p) on a 16-bit Microcomputer. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 182–194. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    IEEE. Standard Specifications for Public-Key Cryptography (2000)Google Scholar
  12. 12.
    ISO/IEC. Information technology – Security techniques – Cryptographic techniques based on elliptic curves (2002)Google Scholar
  13. 13.
    Janssens, S., Thomas, J., Borremans, W., Gijsels, P., Verhauwhede, I., Vercauteren, F., Preneel, B., Vandewalle, J.: Hardware/software co-design of an elliptic curve public-key cryptosystem (2001)Google Scholar
  14. 14.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48, 203–209 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kumar, S., Girimondo, M., Weimerskirch, A., Paar, C., Patel, A., Wander, A.S.: Embedded End-to-End Wireless Security with ECDH Key Exchange. In: Proceedings of the 46th IEEE International Midwest Symposium on Circuits and Systems — MWSCAS 2003 (December 2003)Google Scholar
  16. 16.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Ç., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  18. 18.
    NIST. Recommended Elliptic Curves for Federal Government Use (May 1999)Google Scholar
  19. 19.
    Schroeppel, R., Orman, H., O’Malley, S., Spatscheck, O.: Fast key exchange with elliptic curve systems. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 43–56. Springer, Heidelberg (1995)Google Scholar
  20. 20.
    Song, L., Parhi, K.K.: Low energy digit-serial/parallel finite field multipliers. Journal of VLSI Signal Processing 19(2), 149–166 (1998)CrossRefGoogle Scholar
  21. 21.
    De Win, E., Bosselaers, A., Vandenberghe, S., De Gersem, P., Vandewalle, J.: A fast software implementation for arithmetic operations in GF(2n). In: Kim, K.-C., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 65–76. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  22. 22.
    Woodbury, A., Bailey, D.V., Paar, C.: Elliptic curve cryptography on smart cards without coprocessors. In: CARDIS 2000, Bristol, UK, September 20–22, Kluwer, Dordrecht (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sandeep Kumar
    • 1
  • Christof Paar
    • 1
  1. 1.Chair for Communication SecurityRuhr-Universität BochumBochumGermany

Personalised recommendations