Analyzing Sensory Data Using Non-linear Preference Learning with Feature Subset Selection

  • Oscar Luaces
  • Gustavo F. Bayón
  • José R. Quevedo
  • Jorge Díez
  • Juan José del Coz
  • Antonio Bahamonde
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3201)


The quality of food can be assessed from different points of view. In this paper, we deal with those aspects that can be appreciated through sensory impressions. When we are aiming to induce a function that maps object descriptions into ratings, we must consider that consumers’ ratings are just a way to express their preferences about the products presented in the same testing session. Therefore, we postulate to learn from consumers’ preference judgments instead of using an approach based on regression. This requires the use of special purpose kernels and feature subset selection methods. We illustrate the benefits of our approach in two families of real-world data bases.


Support Vector Machine Sensory Data Bayesian Belief Network Feature Subset Selection Preference Judgment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Murray, J., Delahunty, C., Baxter, I.: Descriptive sensory analysis: past, present and future. Food Research International 36, 461–471 (2001)CrossRefGoogle Scholar
  2. 2.
    Corney, D.: Designing food with bayesian belief networks. In: Proceedings of the International Conference on Adaptive Computing in engineering Design and Manufacture, pp. 83–94 (2002)Google Scholar
  3. 3.
    Goyache, F., Bahamonde, A., Alonso, J., López, S., del Coz, J.J., Quevedo, J., Ranilla, J., Luaces, O., Alvarez, I., Royo, L., Díez, J.: The usefulness of artificial intelligence techniques to assess subjective quality of products in the food industry. Trends in Food Science and Technology 12, 370–381 (2001)CrossRefGoogle Scholar
  4. 4.
    Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal regression. In: Proceedings of the Ninth International Conference on Artificial Neural Networks, Edinburgh, UK, pp. 97–102 (1999)Google Scholar
  5. 5.
    Joachims, T.: Optimizing search engines using clickthrough data. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining, KDD (2002)Google Scholar
  6. 6.
    Bahamonde, A., Bayón, G.F., Díez, J., Quevedo, J.R., Luaces, O., del Coz, J.J., Alonso, J., Goyache, F.: Feature subset selection for learning preferences: A case study. In: Proceedings of the International Conference on Machine Learning (ICML 2004), Banff, Alberta, Canada (2004)Google Scholar
  7. 7.
    Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)zbMATHGoogle Scholar
  8. 8.
    Cohen, W., Shapire, R., Singer, Y.: Learning to order things. Journal of Artificial Intelligence Research 10, 243–270 (1999)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Dumais, S., Bharat, K., Joachims, T., Weigend, A. (eds.): Workshop on implicit measures of user interests and preferences. ACM SIGIR Conference, Toronto, Canada (2003)Google Scholar
  10. 10.
    Næs, T., Risvik, E.: Multivariate analysis of data in sensory science. Elsevier, Amsterdam (1996)Google Scholar
  11. 11.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389–422 (2002)zbMATHCrossRefGoogle Scholar
  12. 12.
    Rakotomamonjy, A.: Variable selection using SVM-based criteria. Journal of Machine Learning Research 3, 1357–1370 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Degroeve, S., De Baets, B., Van de Peer, Y., Rouzé, P.: Feature subset selection for splice site prediction. Bioinformatics 18, 75–83 (2002)Google Scholar
  14. 14.
    Schuurmans, D., Southey, F.: Metric-based methods for adaptive model selection and regularization. Machine Learning 48, 51–84 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Bengio, Y., Chapados, N.: Extensions to metric-based model selection. Journal of Machine Learning Research 3, 1209–1227 (2003)zbMATHCrossRefGoogle Scholar
  16. 16.
    Gil, M., Serra, X., Gispert, M., Oliver, M., Sañudo, C., Panea, B., Olleta, J., Campo, M., Oliván, M., Osoro, K., Garcia-Cachan, M., Cruz-Sagredo, R., Izquierdo, M., Espejo, M., Martín, M., Piedrafita, J.: The effect of breed-production systems on the myosin heavy chain 1, the biochemical characteristics and the colour variables of longissimus thoracis from seven spanish beef cattle breeds. Meat Science 58, 181–188 (2001)CrossRefGoogle Scholar
  17. 17.
    Picinelli, A., Suárez, B., Moreno, J., Rodríguez, R., Caso-García, L., Mangas, J.: Chemical characterization of Asturian cider. Journal of Agricultural and Food Chemistry 48, 3997–4002 (2000)CrossRefGoogle Scholar
  18. 18.
    Joachims, T.: Making large-scale support vector machines learning practical. In: Schölkopf, B., Burges, C., S., A. (eds.) Advances in Kernel Methods: Support Vector Machines, MIT Press, Cambridge (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Oscar Luaces
    • 1
  • Gustavo F. Bayón
    • 1
  • José R. Quevedo
    • 1
  • Jorge Díez
    • 1
  • Juan José del Coz
    • 1
  • Antonio Bahamonde
    • 1
  1. 1.Artificial Intelligence CenterUniversity of Oviedo at GijónGijónSpain

Personalised recommendations