Adaptive Online Time Allocation to Search Algorithms

  • Matteo Gagliolo
  • Viktor Zhumatiy
  • Jürgen Schmidhuber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3201)


Given is a search problem or a sequence of search problems, as well as a set of potentially useful search algorithms. We propose a general framework for online allocation of computation time to search algorithms based on experience with their performance so far. In an example instantiation, we use simple linear extrapolation of performance for allocating time to various simultaneously running genetic algorithms characterized by different parameter values. Despite the large number of searchers tested in parallel, on various tasks this rather general approach compares favorably to a more specialized state-of-the-art heuristic; in one case it is nearly two orders of magnitude faster.


  1. 1.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W., et al. (eds.) GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  2. 2.
    Freisleben, B., Merz, P.: New Genetic Local Search Operators for the Traveling Salesman Problem. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 890–900. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Fürnkranz, J., Petrak, J., Brazdil, P., Soares, C.: On the use of fast subsampling estimates for algorithm recommendation. Technical Report TR-2002-36, Ö sterreichisches Forschungsinstitut für Artificial Intelligence, Wien (2002)Google Scholar
  4. 4.
    Gardner Jr., E.S.: Exponential smoothing: the state of the art. Journal of Forecasting 4, 1–28 (1985)CrossRefGoogle Scholar
  5. 5.
    Harick, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, July 13-17, vol. 2, p. 1867. Morgan Kaufmann, San Francisco (1999)Google Scholar
  6. 6.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)Google Scholar
  7. 7.
    Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: Walsh, T., Gent, I.P., Maaren, H.v. (eds.) SAT 2000, pp. 283–292. IOS press, Amsterdam (2000), Google Scholar
  8. 8.
    Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: a survey. Journal of AI research 4, 237–285 (1996)Google Scholar
  9. 9.
    Kalousis, A., Gama, J.a., Hilario, M.: On data and algorithms: Understanding inductive performance. Mach. Learn. 54(3), 275–312 (2004)zbMATHCrossRefGoogle Scholar
  10. 10.
    Moore, W., Lee, M.S.: Efficient algorithms for minimizing cross validation error. In: Proceedings of the 11th International Conference on Machine Learning, pp. 190–198. Morgan Kaufmann, San Francisco (1994)Google Scholar
  11. 11.
  12. 12.
    Schmidhuber, J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004); Short version in NIPS 15, pp. 1571–1578 (2003)zbMATHCrossRefGoogle Scholar
  13. 13.
    Soares, C., Brazdil, P.B., Kuba, P.: A meta-learning method to select the kernel width in support vector regression. Mach. Learn. 54(3), 195–209 (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Solomonoff, R.J.: Progress in incremental machine learning. Technical Report IDSIA-16- 03, IDSIA (2003)Google Scholar
  15. 15.
    Wall, M.: GAlib, A C++ Genetic Algorithms Library.,

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Matteo Gagliolo
    • 1
  • Viktor Zhumatiy
    • 1
  • Jürgen Schmidhuber
    • 1
  1. 1.IDSIAManno-LuganoSwitzerland

Personalised recommendations