Second-Order Blind Source Separation Based on Multi-dimensional Autocovariances

  • Fabian J. Theis
  • Anke Meyer-Bäse
  • Elmar W. Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3195)

Abstract

SOBI is a blind source separation algorithm based on time decorrelation. It uses multiple time autocovariance matrices, and performs joint diagonalization thus being more robust than previous time decorrelation algorithms such as AMUSE. We propose an extensioncalled mdSOBI by using multidimensional autocovariances, which can be calculated for data sets with multidimensional parameterizations such as images or fMRI scans. mdSOBI has the advantage of using the spatial data in all directions, whereas SOBI only uses a single direction. These findings are confirmed by simulations and an application to fMRI analysis, where mdSOBI outperforms SOBI considerably.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cichocki, A., Amari, S.: Adaptive blind signal and image processing. John Wiley & Sons, Chichester (2002)CrossRefGoogle Scholar
  2. 2.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. John Wiley & Sons, Chichester (2001)CrossRefGoogle Scholar
  3. 3.
    Tong, L., Liu, R.W., Soon, V., Huang, Y.F.: Indeterminacy and identifiability of blind identification. IEEE Transactions on Circuits and Systems 38, 499–509 (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Belouchrani, A., Meraim, K.A., Cardoso, J.F., Moulines, E.: A blind source separation technique based on second order statistics. IEEE Transactions on Signal Processing 45, 434–444 (1997)CrossRefGoogle Scholar
  5. 5.
    Ziehe, A., Mueller, K.R.: TDSEP – an efficient algorithm for blind separation using time structure. In: Niklasson, L., Bodén, M., Ziemke, T. (eds.) Proc. of ICANN 1998, Skövde, Sweden, pp. 675–680. Springer, Berlin (1998)Google Scholar
  6. 6.
    Joho, M., Mathis, H., Lamber, R.: Overdetermined blind source separation: using more sensors than source signals in a noisy mixture. In: Proc. of ICA 2000, Helsinki, Finland, pp. 81–86 (2000)Google Scholar
  7. 7.
    Cardoso, J.F., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM J. Mat. Anal. Appl. 17, 161–164 (1995)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Yeredor, A.: Non-orthogonal joint diagonalization in the leastsquares sense with application in blind source separation. IEEE Trans. Signal Processing 50, 1545–1553 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ziehe, A., Laskov, P., Mueller, K.R., Nolte, G.: A linear least-squares algorithm for joint diagonalization. In: Proc. of ICA 2000, Nara, Japan, pp. 469–474 (2003)Google Scholar
  10. 10.
    Cardoso, J.F., Souloumiac, A.: Blind beamforming for non gaussian signals. IEE Proceedings - F 140, 362–370 (1993)Google Scholar
  11. 11.
    Woods, R., Cherry, S., Mazziotta, J.: Rapid automated algorithm for aligning and reslicing pet images. Journal of Computer Assisted Tomography 16, 620–633 (1992)CrossRefGoogle Scholar
  12. 12.
    McKeown, M., Jung, T., Makeig, S., Brown, G., Kindermann, S., Bell, A., Sejnowksi, T.: Analysis of fMRI data by blind separation into independent spatial components. Human Brain Mapping 6, 160–188 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fabian J. Theis
    • 1
    • 2
  • Anke Meyer-Bäse
    • 2
  • Elmar W. Lang
    • 1
  1. 1.Institute of BiophysicsUniversity of RegensburgRegensburgGermany
  2. 2.Department of Electrical and Computer EngineeringFlorida State UniversityTallahasseeUSA

Personalised recommendations