3D Spatial Analysis of fMRI Data on a Word Perception Task

  • Ingo R. Keck
  • Fabian J. Theis
  • Peter Gruber
  • Elmar W. Lang
  • Karsten Specht
  • Carlos G. Puntonet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3195)

Abstract

We discuss a 3D spatial analysis of fMRI data taken during a combined word perception and motor task. The event – based experiment was part of a study to investigate the network of neurons involved in the perception of speech and the decoding of auditory speech stimuli. We show that a classical general linear model analysis using SPM does not yield reasonable results. With blind source separation (BSS) techniques using the FastICA algorithm it is possible to identify different independent components (IC) in the auditory cortex corresponding to four different stimuli. Most interesting, we could detect an IC representing a network of simultaneously active areas in the inferior frontal gyrus responsible for word perception.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kwong, K.K., Belliveau, J.W., Chester, D.A., Goldberg, I.E., Weisskoff, R.M., Poncelet, B.P., Kennedy, D.N., Hoppel, B.E., Cohen, M.S., Turner, R., Cheng, H.-M., Brady, T.J., Rosen, B.R.: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc. Natl. Acad. USA 89, 5675–5679 (1992)CrossRefGoogle Scholar
  2. 2.
    Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic-resonance-imaging with contrast dependent on blood oxygenation. Proc. Natl Acad. Sci. USA 87, 9868–9872 (1990)CrossRefGoogle Scholar
  3. 3.
    Frackowiak, R.S.J., Friston, K.J., Frith, C.D., Dolan, R.J., Mazziotta, J.C.: Human Brain Function. Academic Press, San Diego (1997)Google Scholar
  4. 4.
    Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural Computation 7(6), 1129–1159 (1995)CrossRefGoogle Scholar
  5. 5.
    McKeown, M.J., Sejnowski, T.J.: Independent Component Analysis of FMRI Data: Examining the Assumptions. Human Brain Mapping 6, 368–372 (1998)CrossRefGoogle Scholar
  6. 6.
    Hyvärinnen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)CrossRefGoogle Scholar
  7. 7.
    Esposito, F., Formisano, E., Seifritz, E., Goebel, R., Morrone, R., Tedeschi, G., Di Salle, F.: Spatial Independent Component Analysis of Functional MRI Time-Series: To What Extent Do Results Depend on the Algorithm Used? Human Brain Mapping 16, 146–157 (2002)CrossRefGoogle Scholar
  8. 8.
    Specht, K., Reul, J.: Function segregation of the temporal lobes into highly differentiated subsystems for auditory perception: an auditory rapid event-related fMRI-task. NeuroImage 20, 1944–1954 (2003)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Calhoun, V.D., Adali, T., Pearlson, G.D., Pekar, J.J.: A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis. Human Brain Mapping 14, 140–151 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ingo R. Keck
    • 1
  • Fabian J. Theis
    • 1
  • Peter Gruber
    • 1
  • Elmar W. Lang
    • 1
  • Karsten Specht
    • 2
  • Carlos G. Puntonet
    • 3
  1. 1.Institute of Biophysics, Neuro- and Bioinformatics GroupUniversity of RegensburgRegensburgGermany
  2. 2.Institute of MedicineResearch Center JülichJülichGermany
  3. 3.Departamento de Arquitectura y Tecnologia de ComputadoresUniversidad de Granada/ESIIGranadaSpain

Personalised recommendations