Advertisement

Spatio-chromatic ICA of a Mosaiced Color Image

  • David Alleysson
  • Sabine Süsstrunk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3195)

Abstract

We analyze whether Independant Component Analysis(ICA) is an appropriate tool for estimating spatial information in spatio-chromatic mosaiced color images. In previous studies, ICA analysis of natural color scenes (Hoyer et al. [2000]; Tailor et al., [2000]; Wachtler et al., [2001]; Lee et al. [2002]) have shown the emergence of achromatic patterns that can be used for luminance estimation. However, these analysis are based on fully defined spatio-chromatic images, i.e. three or more chromatic values per pixel. In case of a reduced spatio-chromatic set with a single chromatic measure per pixel, such as present in the retina or in CFA images, we found that ICA is not an appropriate tool for estimating spatial information. By extension, we discuss that the relationship between natural image statistics and the visual system does not remain valid if we take into account the spatio-chromatic sampling by cone photoreceptors.

Keywords

Color Image Independent Component Analysis Independent Component Analysis Natural Scene Mosaiced Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alleysson, D., Süsstrunk, S., Hérault, J.: Color demosaicing by estimating luminance and opponent chromatic signals in Fourier domain. In: Proc. IS&T/SID 10th Color Imaging Conference, Scottsdale, pp. 331–336 (2002)Google Scholar
  2. Alleysson, D., Süsstrunk, S.: Spatio-chromatic PCA analysis of a mosaiced image. In: Proc. IS&T 2nd European Conf. on Color in Graphics, Image and Vision (CGIV 2004), Aachen, Germany, pp. 311–314 (2004a)Google Scholar
  3. Alleysson, D., Süsstrunk, S.: Aliasing in digital cameras. SPIE Electronic Imaging Newsletter, Special Issue on Smart Image Acquisition and Processing 14(1), 1 (2004b)Google Scholar
  4. Atick, J.J., Redlich, A.N.: What does the retina know about natural scenes? Neural Computation 4, 196–210 (1992)CrossRefGoogle Scholar
  5. Barlow, H.B.: Unsupervised learning. Neural Computation 1, 295–311 (1989)CrossRefGoogle Scholar
  6. Bauchsbaum, G., Gottschalk, A.: Trichromacy, opponent colours coding and optimum colour information in the retina. Proc. R. Soc. Lond. B220, 89–113 (1983)CrossRefGoogle Scholar
  7. Bell, A.J., Sejnowski, T.J.: The independent components of natural scenes are edge filters. Vis. Res., 3327–3338 (1997)Google Scholar
  8. Doi, E., Inui, T., Lee, T.W., Wachtler, T., Sejnowski, T.J.: Spatio-chromatic receptive field properties derived from information-theoretic analyses of cone mosaic response to natural scenes. Neural Comp. 15, 397–417 (2003)zbMATHCrossRefGoogle Scholar
  9. Field, D.J.: Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987)CrossRefGoogle Scholar
  10. Hoyer, P.O., Hyvärinen, A.: Independent Component Analysis Applied to Feature Extraction from Colour and Stereo Images. Network: Computation in Neural Systems 11(3), 191–210 (2000)zbMATHCrossRefGoogle Scholar
  11. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13, 411–430 (2000)CrossRefGoogle Scholar
  12. Hyvärinen, A.: The FastICA package for Matlab (2004), http://www.cis.hut.fi/projects/ica/fastica/
  13. Lee, T., Wachtler, T., Sejnowski, T.J.: Color opponency is an efficient representation of spectral properties in natural scenes. Vis. Res. 42, 2095–2103 (2002)CrossRefGoogle Scholar
  14. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
  15. Ruderman, D.L., Cronin, T.W., Chiao, C.C.: Statistics of cone responses to natural images: implication for visual coding. J. Opt. Soc. Am. 15, 2036–2045 (1998)CrossRefGoogle Scholar
  16. Tailor, D.R., Finkel, L.F., Buchsbaum, G.: Color-opponent receptive fields derived from independent component analysis of natural images. Vis. Res. 40, 2071–2076 (2000)CrossRefGoogle Scholar
  17. Wachtler, T., Lee, T.W., Sejnowski, T.J.: Chromatic structure of natural scenes. J. Opt. Soc. Am. A 18, 65–77 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • David Alleysson
    • 1
  • Sabine Süsstrunk
    • 2
  1. 1.Laboratory for Psychology and NeuroCognitionCNRS UMR 5105, Université Pierre-Mendès FranceGrenobleFrance
  2. 2.Audiovisual Communications LaboratoryÉcole Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations