Multi-agent Systems and Distributed Data Mining

  • Chris Giannella
  • Ruchita Bhargava
  • Hillol Kargupta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3191)

Abstract

Multi-agent systems offer an architecture for distributed problem solving. Distributed data mining algorithms specialize on one class of such distributed problem solving tasks—analysis and modeling of distributed data. This paper offers a perspective on distributed data mining algorithms in the context of multi-agents systems. It particularly focuses on distributed clustering algorithms and their potential applications in multi-agent-based problem solving scenarios. It discusses potential applications in the sensor network domain, reviews some of the existing techniques, and identifies future possibilities in combining multi-agent systems with the distributed data mining technology.

Keywords

multi-agent systems distributed data mining clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babaoglu, O., Meling, H., Montresor, A.: Anthill: a framework for the development of agent-based peer-to-peer systems. Technical Report 9, Department of Computer Science, University of Bologna (November 2001)Google Scholar
  2. 2.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream Systems. In: Proceedings of the 21th ACM SIGMOD-SIGACT-SIGART Symposium on Principals of Database Systems (PODS), pp. 1–16 (2002)Google Scholar
  3. 3.
    Dhillon, I.S., Modha, D.S.: A data-clustering algorithm on distributed memory multiprocessors. In: Zaki, M.J., Ho, C.-T. (eds.) KDD 1999. LNCS (LNAI), vol. 1759, pp. 245–260. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Johnson, E., Kargupta, H.: Hierarchical Clustering From Distributed, Heterogeneous Data. In: Zaki, M., Ho, C. (eds.) Large-Scale Parallel KDD Systems. LNCS, vol. 1759, pp. 221–244. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Eisenhardt, M., Muller, W., Henrich, A.: Classifying Documents by Distributed P2P Clustering. In: Proceedings of Informatik 2003, GI Lecture Notes in Informatics, Frankfort, Germany (2003)Google Scholar
  6. 6.
    Farinelli, A., Grisetti, G., Iocchi, L., Lo Cascio, S., Nardi, D.: Design and evaluation of multi agent systems for rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 4, pp. 3148–3143 (2003)Google Scholar
  7. 7.
    Fred, A., Jain, A.: Data Clustering Using Evidence Accumulation. In: Proceedings of the International Conference on Pattern Recognition 2002, pp. 276–280 (2002)Google Scholar
  8. 8.
    Forman, G., Zhang, B.: Distributed Data Clustering Can Be Efficient and Exact. SIGKDD Explorations 2(2), 34–38 (2000)CrossRefGoogle Scholar
  9. 9.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman Publishers, San Francisco (2001)Google Scholar
  10. 10.
    Hand, D., Mannila, H., Smyth, P.: Principals of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Berlin (2001)MATHGoogle Scholar
  12. 12.
    Hinneburg, A., Keim, D.: An Efficient Approach to Clustering in Large Multimedia Databases with Noise. In: Proceedings of the 1998 International Confernece on Knowledge Discovery and Data Mining (KDD), pp. 58–65 (1998)Google Scholar
  13. 13.
    Januzaj, E., Kriegel, H.-P., Pfeifle, M.: DBDC: Density based distributed clustering. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 88–105. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Jouve, P., Nicoloyannis, N.: A New Method for Combining Partitions, Applications for Distributed Clustering. In: Proceedings of Workshop on Parallel and Distributed Computing for Machine Learning as part of the 14th European Conference on Machine Learning (2003)Google Scholar
  15. 15.
    Kahn, J., Katz, R., Pister, K.: Mobile networking for smart dust. In: ACM/IEEE Intl. Conf. on Mobile Computing and Networking, MobiCom 1999 (1999)Google Scholar
  16. 16.
    Kargupta, H., Chan, P. (eds.): Advances in Distributed and Parallel Knowledge Discovery. AAAI Press, Menlo Park (2000)Google Scholar
  17. 17.
    Kargupta, H., Sivakumar, K.: Existential Pleasures of Distributed Data Mining. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (eds.) Data Mining: Next Generation Challenges and Future Directions. MIT/AAAI Press, Menlo Park (2004)Google Scholar
  18. 18.
    Kargupta, H., Bhargava, R., Liu, K., Powers, M., Blair, P., Klein, M.: VEDAS: A Mobile Distributed Data Stream Mining System for Real-Time Vehicle Monitoring. In: Proceedings of the 2004 SIAM International Conference on Data Mining (2004)Google Scholar
  19. 19.
    Kargupta, H., Huang, W., Sivakumar, K., Johnson, E.: Distributed clustering using collective principal component analysis. Knowledge and Information Systems Journal 3, 422–448 (2001)MATHCrossRefGoogle Scholar
  20. 20.
    Klusch, M., Lodi, S., Moro, G.: Distributed Clustering Based on Sampling Local Density Estimates. In: Proceedings of the Joint International Conference on AI, IJCAI 2003 (2003)Google Scholar
  21. 21.
    Lazarevic, A., Pokrajac, D., Obradovic, Z.: Distributed Clustering and Local Regression for Knowledge Discovery in Multiple Spatial Databases. In: Proceedings of the 8th European Symposium on Artificial Neural Networks, pp. 129–134 (2000)Google Scholar
  22. 22.
    Merugu, S., Ghosh, J.: Privacy-Preserving Distributed Clustering Using Generative Models. In: Proceedings of the IEEE Conference on Data Mining, ICDM (2003)Google Scholar
  23. 23.
    Ogston, E., Vassiliadis, S.: A Peer-to-Peer Agent Auction. In: First International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 150–159 (2002)Google Scholar
  24. 24.
    Park, B., Kargupta, H.: Distributed Data Mining: Algorithms, Systems, and Applications. In: Ye, N. (ed.) The Handbook of Data Mining, pp. 341–358. Lawrence Erlbaum Associates, Mahwah (2003)Google Scholar
  25. 25.
    Provost, F.: Distributed Data Mining: Scaling Up and Beyond. In: Kargupta, H., Joshi, A., Sivakumar, K., Yesha, Y. (eds.) Advances in Distributed and Parallel Knowledge Discovery, pp. 3–27. MIT/AAAI Press, Menlo Park (2000)Google Scholar
  26. 26.
    Samatova, N., Ostrouchov, G., Geist, A., Melechko, A.: RACHET: An Efficient Cover- Based Merging of Clustering Hierarchies from Distributed Datasets. Distributed and Parallel Databases 11(2), 157–180 (2002)MATHGoogle Scholar
  27. 27.
    Sharples, S., Lindemann, C., Waldhorst, O.: A Multi-Agent Architecture For Intelligent Building Sensing and Control. In: International Sensor Review Journal (1999)Google Scholar
  28. 28.
    Soh, L.-K., Tsatsoulis, C.: Reflective Negotiating Agents for Real-Time Multisensor Target Tracking. In: International Joint Conference On Artificial Intelligence (2001)Google Scholar
  29. 29.
    Strehl, A., Ghosh, J.: Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple Partitions. Journal of Machine Learning Research 3, 583–617 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Topchy, A., Jain, A., Punch, W.: Combining Multiple Weak Clusterings. In: Proceedings of the IEEE Conference on Data Mining, ICDM (2003)Google Scholar
  31. 31.
    Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufman Publishers, San Fransisco (1999)Google Scholar
  32. 32.
    Yu, B., Singh, M.: Emergence of Agent-Based Referral Networks. In: Proceedings of First International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 1208–1209 (2002)Google Scholar
  33. 33.
    Zaki, M.: Parallel and Distributed Association Mining: A Survey. IEEE Concurrency 7(4), 14–25 (1999)CrossRefGoogle Scholar
  34. 34.
    Zaki, M.: Parallel and Distributed Data Mining: An Introduction. In: Zaki, M., Ho, C.-T. (eds.) Large-Scale Parallel Data Mining (Lecture Notes in Artificial Intelligence 1759), pp. 1–23. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Chris Giannella
    • 1
  • Ruchita Bhargava
    • 1
  • Hillol Kargupta
    • 1
  1. 1.Department of Computer Science and Electrical EngineeringUniversity of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations