Advertisement

A Checker for Modal Formulae for Processes with Data

  • Jan Friso Groote
  • Tim A. C. Willemse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3188)

Abstract

We present a new technique for the automatic verification of first order modal μ-calculus formulae on infinite state, data-dependent processes. The use of boolean equation systems for solving the model-checking problem in the finite case is well-studied. We extend this technique to infinite state and data-dependent processes. We describe a transformation of the model checking problem to the problem of solving equation systems, and present a semi-decision procedure to solve these equation systems and discuss the capabilities of a prototype implementing our procedure. This prototype has been successfully applied to many systems. We report on its functioning for the Bakery Protocol.

Keywords

Model Checking μCRL First Order Modal μ-Calculus First Order Boolean Equation Systems Data-Dependent Systems Infinite State Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  3. 3.
    Blom, S.C.C., Fokkink, W.J., Groote, J.F., Van Langevelde, I., Lisser, B., van de Pol, J.C.: μCRL: A toolset for analysing algebraic specification. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 250–254. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Bouajjani, A., Collomb-Annichini, A., Lacknech, Y., Sighireanu, M.: Analysis of fair extended automata. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 335–355. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Bradfield, J.C., Stirling, C.: Local model checking for infinite state spaces. Theoretical Computer Science 96(1), 157–174 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986)CrossRefzbMATHGoogle Scholar
  7. 7.
    Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a logic of counter arithmetic with lambda expressions and uninterpreted functions. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Bultan, T., Gerber, R., Pugh, W.: Symbolic model checking of infinite state systems using Presburger arithmetic. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 400–411. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a setting with data. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 74–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Ponse, A., Verhoef, C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes 1994. Workshops in Computing Series, pp. 26–62. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  11. 11.
    Groote, J.F., Reniers, M.A.: Algebraic process verification. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, ch.17, pp. 1151–1208. North-Holland, Elsevier (2001)CrossRefGoogle Scholar
  12. 12.
    Groote, J.F., van de Pol, J.C.: A bounded retransmission protocol for large data packets. a case study in computer checked verification. In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 536–550. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Groote, J.F., van der Pol, J.C.: Equational binary decision diagrams. In: Parigot, M., Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 161–178. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Groote, J.F., Willemse, T.A.C.: A checker for modal formulas for processes with data. Technical Report CSR 02-16, Eindhoven University of Technology, Department of Mathematics and Computer Science (2002)Google Scholar
  15. 15.
    Groote, J.F., Willemse, T.A.C.: Parameterised Boolean Equation Systems. Technical Report CSR 04-09, Eindhoven University of Technology, Department of Mathematics and Computer Science, 2004. An extended abstract is to appear in CONCUR 2004, LNCS, Springer-Verlag (2004)Google Scholar
  16. 16.
    Kozen, D.: Results on the propositional mu-calculus. Theoretical Computer Science 27, 333–354 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Luttik, S.P.: Choice quantification in process algebra. PhD thesis, University of Amsterdam (April 2002)Google Scholar
  18. 18.
    Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Technical University of Munich (1997)Google Scholar
  19. 19.
    Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular alternation-free mu-calculus. In: Gnesi, S., Schieferdecker, I., Rennoch, A. (eds.) FMICS 2000, pp. 65–86 (2000)Google Scholar
  20. 20.
    Milner, R.: Communication and Concurrency. Prentice Hall Internationa, Englewood Cliffs (1989)zbMATHGoogle Scholar
  21. 21.
    Raynal, M.: Algorithms for Mutual Exclusion. North Oxford Academic (1986)Google Scholar
  22. 22.
    Strichman, O., Seshia, S.A., Bryant, R.E.: Deciding separation formulas with SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 209–222. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Usenko, Y.S.: Linearization in μCRL. PhD thesis, Eindhoven University of Technology (December 2002)Google Scholar
  24. 24.
    Willemse, T.A.C.: Semantics and Verification in Process Algebras with Data and Timing. PhD thesis, Eindhoven University of Technology (February 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jan Friso Groote
    • 1
  • Tim A. C. Willemse
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations