Advertisement

Real Time and Stochastic Time

  • Mario Bravetti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3185)

Abstract

We present a theory for the design and analysis of concurrent/distributed systems with real-time and stochastic time aspects. We start by presenting the model of Interactive Generalized Semi-Markov Processes (IGSMP): a compositional model for representing the class of stochastic processes known as Generalised Semi-Markov Processes (GSMPs), i.e. probabilistic timed systems where durations of delays are expressed by random variables with a general probability distribution. Technically, IGSMPs extend GSMPs with action transitions representing the ability of a process to interact with another process. Then, we introduce the calculus of Interactive Generalized Semi-Markov Processes, a stochastic process algebra which produces IGSMPs as semantic models of its terms. This is obtained by expressing the concurrent execution of delays through a simple probabilistic extension of Van Glabbeek and Vaandrageer’s ST semantics based on dynamic names. We also present observational equivalence over IGSMPs, we observe that it is a congruence for all the operators of the calculus and we produce an axiomatization for this equivalence which is complete over finite-state strongly guarded processes. Finally, we present a case study on queuing systems G/G/1/q.

Keywords

Semantic Model Operational Semantic Probabilistic Choice Visible Action Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L.: On “Axiomatising Finite Concurrent Processes”. SIAM Journal on Computing 23(4), 852–863 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Ajmone Marsan, M., Bianco, A., Ciminiera, L., Sisto, R., Valenzano, A.: A LOTOS Extension for the Performance Analysis of Distributed Systems. IEEE/ACM Trans. on Networking 2, 151–164 (1994)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Dill, D.: Model-Checking in Dense Real-Time. Information and Computation 104, 2–34 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bernardo, M.: Theory and Application of Extended Markovian Process Algebra. Ph.D. Thesis, University of Bologna, Italy (1999)Google Scholar
  5. 5.
    Bravetti, M.: Specification and Analysis of Stochastic Real-Time Systems. Ph.D. Thesis, University of Bologna (Italy) (2002), Available at http://www.cs.unibo.it/~bravetti
  6. 6.
    Bravetti, M.: Towards the Integration of Real-Time and Probabilistic-Time Process Algebras. In: Proc. of the 3rd European Research Seminar on Advances in Distributed Systems (ERSADS 1999), Madeira Island (Portugal) (April 1999)Google Scholar
  7. 7.
    Bravetti, M.: Revisiting Interactive Markov Chains. In: Proc. of the 3rd Int. Workshop on Models for Time-Critical Systems (MTCS 2002), Brno (Czech Republic), August 2002. ENTCS, vol. 68(5) (2002)Google Scholar
  8. 8.
    Bravetti, M.: An Integrated Approach for the Specification and Analysis of Stochastic Real-Time Systems. In: Proc. of the 3rd Int. Workshop on Models for Time-Critical Systems (MTCS 2002), Brno (Czech Republic), August 2002. ENTCS, vol. 68(5) (2002)Google Scholar
  9. 9.
    Bravetti, M., Aldini, A.: Non-Determinism in Probabilistic Timed Systems with General Distributions. In: Proc. of the 2nd Int. Workshop on Models for Time-Critical Systems (MTCS 2001), Aalborg (Denmark), August 2001. ENTCS, vol. 52(3) (2001)Google Scholar
  10. 10.
    Bravetti, M., Bernardo, M.: Compositional Asymmetric Cooperations for Process Algebras with Probabilities, Priorities, and Time. In: Proc. of the 1st Int. Workshop on Models for Time-Critical Systems (MTCS 2000), State College (PA). ENTCS, vol. 39(3) (2000)Google Scholar
  11. 11.
    Bravetti, M., Bernardo, M., Gorrieri, R.: From EMPA to GSMPA: Allowing for General Distributions. In: Brinksma, E., Nymeyer, A. (eds.) Proc. of the 5th Int. Workshop on Process Algebras and Performance Modeling (PAPM 1997), Enschede (The Netherlands), June 1997, pp. 17–33 (1997)Google Scholar
  12. 12.
    Bravetti, M., Bernardo, M., Gorrieri, R.: Towards Performance Evaluation with General Distributions in Process Algebras. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 405–422. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Bravetti, M., Gorrieri, R.: Deciding and Axiomatizing Weak ST Bisimulation for a Process Algebra with Recursion and Action Refinement. ACM Transactions on Computational Logic 3(4), 465–520 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Bravetti, M., Gorrieri, R.: The Theory of Interactive Generalized Semi-Markov Processes. Theoretical Computer Science 282(1), 5–32 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Busi, N., van Glabbeek, R.J., Gorrieri, R.: Axiomatising ST-Bisimulation Equivalence. In: Proc. of the IFIP Working Conf. on Programming Concepts, Methods and Calculi (PROCOMET 1994), S. Miniato (Italy), pp. 169–188 (1994)Google Scholar
  16. 16.
    Cassandras, C.G.: Discrete Event Systems. Modeling and Performance Analysis. Aksen Associates, Irwin (1993)Google Scholar
  17. 17.
    Cox, D.R.: The Analysis of non-Markovian Stochastic Processes by the Inclusion of Supplementary Variables. Proc. of the Cambridge Philosophical Society 51, 433–440 (1955)zbMATHCrossRefGoogle Scholar
  18. 18.
    D’Argenio, P.R.: Algebras and Automata for Timed and Stochastic Systems. Ph.D. Thesis, Univ. Twente (1997)Google Scholar
  19. 19.
    D’Argenio, P.R., Katoen, J.-P., Brinksma, E.: A Stochastic Automata Model and its Algebraic Approach. In: Proc. of the 5th Workshop on Process Algebras and Performance Modelling (PAPM 1997), Enschede (The Netherlands), pp. 1–16 (1997)Google Scholar
  20. 20.
    van Glabbeek, R.J., Vaandrager, F.W.: Petri Net Models for Algebraic Theories of Concurrency. In: de Bakker, J.W., Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 224–242. Springer, Heidelberg (1987)Google Scholar
  21. 21.
    Götz, N., Herzog, U., Rettelbach, M.: TIPP - A Stochastic Process Algebra. In: Proc. of the 1st Workshop on Process Algebras and Performance Modelling (PAPM 1993), Edinburgh (UK), pp. 31–36 (1993)Google Scholar
  22. 22.
    Hermanns, H.: Interactive Markov Chains. Ph.D. Thesis, Universität Erlangen-Nürnberg, Germany (1998)Google Scholar
  23. 23.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  24. 24.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)zbMATHGoogle Scholar
  25. 25.
    Larsen, K.G., Skou, A.: Bisimulation through Probabilistic Testing. Information and Computation 94, 1–28 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Matthes, K.: Zur Theorie der Bedienungsprozesse. In: Trans. of the 3rd Prague Conf. on Information Theory, Stat. Dec. Fns. and Random Processes, pp. 513–528 (1962)Google Scholar
  27. 27.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  28. 28.
    Nicollin, X., Sifakis, J., Yovine, S.: Compiling Real-Time Specifications into Extended Automata. IEEE Trans. on Software Engineering 18(9), 794–804 (1992)CrossRefGoogle Scholar
  29. 29.
    Priami, C.: Stochastic π-Calculus with General Distributions. In: Proc. of the 4th Workshop on Process Algebras and Performance Modelling (PAPM 1996), CLUT, Torino, Italy, pp. 41–57 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Mario Bravetti
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità di BolognaBolognaItaly

Personalised recommendations