Advertisement

Expressiveness of Timed Events and Timed Languages

  • Diletta R. Cacciagrano
  • Flavio Corradini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3185)

Abstract

Timed process algebras are useful tools for the specification and verification of real-time systems. We study the expressiveness of (classes of) these algebras which deal with temporal aspects of concurrent systems by following very different interpretations: durational actions versus durationless actions, absolute time versus relative time, timed functional behavior versus time and functional behavior, local clocks versus global clocks, eagerness versus laziness versus maximal progress.

The aim of this study is manifold. It permits to gain confidence on how time and time passing are modelled in the different approaches to timed process algebras. It shows that some different design decisions are not irreconcilable by presenting simple semantic-preserving mappings from an algebra to another so that techniques and analytic concepts can be transferred from one theory to the other. It allows a better understanding of the technical details and of the definitions in the different approaches in order to speculatively detect advantages/disadvantages of the used methodologies.

Keywords

Basic Action Operational Semantic Parallel Composition Visible Action Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AM93]
    Aceto, L., Murphy, D.: On the ill–timed but well–caused. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 97–111. Springer, Heidelberg (1993)Google Scholar
  2. [AM95]
    Aceto, L., Murphy, D.: Timing and causality in process algebra. Acta Informatica 33(4), 317–350 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [BB91]
    Baeten, J., Bergstra, J.: Real time process algebra. Formal Aspects of Computing 3(2), 142–188 (1991)CrossRefMathSciNetGoogle Scholar
  4. [BLS2000]
    Bérard, B., Labroue, A., Schnoebelen, P.: Verifying performance equivalence for Timed Basic Parallel Processes. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 35–47. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. [BK89]
    Bergstra, J.A., Klop, J.W.: Process theory based on bisimulation semantics. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, Springer, Heidelberg (1989)CrossRefGoogle Scholar
  6. [CN96]
    Cleaveland, R., Natarajan, V.: An algebraic theory of process efficiency. In: Proceedings, LICS 1996, pp. 63–72 (1996)Google Scholar
  7. [CPS93]
    Cleaveland, R., Parrow, J., Steffen, B.: The concurrency workbench: A semantics-based tool for the verification of concurrent systems. Proceedings, ACM Transaction on Programming Languages and Systems 15 (1993)Google Scholar
  8. [CZ91]
    Cleaveland, R., Zwarico, A.: A theory of testing for real-time. In: Proceedings, LICS 1991, pp. 110–119 (1991)Google Scholar
  9. [Cor98]
    Corradini, F.: On performance congruences for process algebras. Information and Computation 145, 191–230 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Cor00]
    Corradini, F.: Absolute versus Relative Time in Process Algebras. Information and Computation 156, 122–172 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [CDI99]
    Corradini, F., D’Ortenzio, D., Di Cola, D.: On the relationships among four Timed Process Algebras. Fundamenta Informaticae 38, 377–395 (1999)zbMATHMathSciNetGoogle Scholar
  12. [CD01]
    Corradini, F., Di Cola, D.: On Testing Urgency through Laziness over Processes with Durational Actions. Theoretical Computer Science 258, 393–407 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  13. [CD03]
    Corradini, F., Di Cola, D.: The expressive power of urgent, lazy and busy-waiting actions in timed processes. Mathematical Structures in Computer Science 13, 619–656 (2003)zbMATHCrossRefGoogle Scholar
  14. [CFP01]
    Corradini, F., Ferrari, G.L., Pistore, M.: On the semantics of durational actions. Theoretical Computer Science 269, 47–82 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. [CP96]
    Corradini, F., Pistore, M.: Specification and verification of timed lazy systems. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 279–290. Springer, Heidelberg (1996)Google Scholar
  16. [CP01]
    Corradini, F., Pistore, M.: ‘Closed Interval Process Algebra’ versus ‘Interval Process Algebra’. Acta Informatica 37, 467–509 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [FM95]
    Ferrari, G.-L., Montanari, U.: Dynamic matrices and the cost analysis of concurrent programs. In: Alagar, V.S., Nivat, M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 307–321. Springer, Heidelberg (1995)Google Scholar
  18. [GW89]
    van Glabbeek, R., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. In: Ritter, G.X. (ed.) Proceedings, Information Processing 1989, pp. 613–618 (1989)Google Scholar
  19. [GR93]
    Gorrieri, R., Roccetti, M.: Towards performance evaluation in process algebras. In: Proceedings, AMAST 1993. Workshop in Computing Series, pp. 289–296. Springer, Heidelberg (1993)Google Scholar
  20. [GRS95]
    Gorrieri, R., Roccetti, M., Stancampiano, E.: A theory of processes with durational actions. Theoretical Computer Science 140(1), 73–94 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [Gro93]
    Groote, J.F.: Transition system specification with negative premises. Theoretical Computer Science 118, 263–299 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [Hoa85]
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1989)Google Scholar
  23. [HR95]
    Hennessy, M., Regan, T.: A temporal process algebras. Information and Computation 117, 221–239 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  24. [KH92]
    Arun-Kumar, S., Hennessy, M.: An Efficiency Preorder for Processes. Acta Informatica 29, 737–760 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  25. [Mil89]
    Milner, R.: Communication and concurrency. International series on computer science. Prentice Hall International, Englewood Cliffs (1989)zbMATHGoogle Scholar
  26. [MPW92]
    Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, part I and II. Information and Computation 100, 1–78 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  27. [MT90]
    Moller, F., Tofts, C.: A Temporal Calculus of Communicating Systems. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 401–414. Springer, Heidelberg (1990)Google Scholar
  28. [MT91]
    Moller, F., Tofts, C.: Relating Processes with Respect to Speed. In: Groote, J.F., Baeten, J.C.M. (eds.) CONCUR 1991. LNCS, vol. 527, pp. 424–438. Springer, Heidelberg (1991)Google Scholar
  29. [NS91]
    Nicollin, X., Sifakis, J.: An Overview and Synthesis on Timed Process Algebras. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1991. LNCS, vol. 600, pp. 526–548. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  30. [RR88]
    Reed, G.M., Roscoe, A.W.D.: A timed model for communicating sequential processes. Theoretical Computer Science 58, 249–261 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  31. [UY97]
    Ulidowski, I., Yuen, S.: Extending process languages with time. In: Johnson, M. (ed.) AMAST 1997. LNCS, vol. 1349, pp. 524–538. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  32. [Vog95]
    Vogler, W.: Timed Testing of Concurrent Systems. Information and Computation 121(2), 149–171 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  33. [Yi90]
    Yi, W.: Real time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Diletta R. Cacciagrano
    • 1
  • Flavio Corradini
    • 1
  1. 1.Dipartimento di Matematica e InformaticaUniversità di CamerinoCamerinoItaly

Personalised recommendations