Implementation of Quorum-Based Decisions in an Election Committee

  • Alexander Prosser
  • Robert Kofler
  • Robert Krimmer
  • Martin Karl Unger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3183)


The paper proposes a method to implement the role of an election committee in electronic voting. Decisions in the committee need not be made unanimously, rather arbitrarily defined quora are supported.


Signature Scheme Committee Member Share Secret Schema Electronic Vote Byzantine Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prosser, A., Kofler, R., Krimmer, R.: Deploying Electronic Democracy for Public Corporations. In: Traunmüller, R. (ed.) EGOV 2003. LNCS, vol. 2739, pp. 234–239. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blakley, R.: Safeguarding cryptographic keys. In: FIPS Conference Procedings, vol. 48, pp. 313–317 (1979)Google Scholar
  4. 4.
    Beutelspacher, A., Rosenbaum, U.: Projektive Geometrie. Vieweg (1992)Google Scholar
  5. 5.
    Kersten, A.G.: Shared Secret Schemas aus Geometrischer Sicht. Mitteilungen aus dem mathematischen Seminar Giessen 208 (1992)Google Scholar
  6. 6.
    Alon, N., Galil, Z., Yung, M.: Dynamic re-sharing verifiable secret sharing against a mobile adversary. In: Proceedings European Symposium on Algorithms, pp. 523–537 (1995)Google Scholar
  7. 7.
    Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public Key Kryptosystems. Comm. ACM 21, 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme based on Discrete Logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. Inf. Theory 6, 644–654 (1976)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Langford, S.: Threshold DSS signatures without a trusted party. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 397–409. Springer, Heidelberg (1995)Google Scholar
  11. 11.
    Desmedt, Y., Frankel, Y.: Shared Generation of authenticators of signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)Google Scholar
  12. 12.
    De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function securely. In: 26th ACM Symposium on the Theory of Computing, pp. 522–533 (1994)Google Scholar
  13. 13.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Signatures. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and Efficient Sharing of RSA Functions (1996) (manuscript)Google Scholar
  15. 15.
    Feldman, P., Micali, S.: An Optimal Algorithm for Synchronous Byzantine Agreement. In: ACM Symp. on Theory of Computing, pp. 148–161 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alexander Prosser
    • 1
  • Robert Kofler
    • 1
  • Robert Krimmer
    • 1
  • Martin Karl Unger
    • 1
  1. 1.Institute of Information Processing and Information EconomicsUniversity of Economics and Business AdministrationVienna

Personalised recommendations