Declustering of Trajectories for Indexing of Moving Objects Databases

  • Youngduk Seo
  • Bonghee Hong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3180)


Efficient storage and retrieval of trajectory indexes has become an essential requirement for moving objects databases. The existing 3DR-tree is known to be an effective trajectory index structure for processing trajectory and time slice queries. Efficient processing of trajectory queries requires parallel processing based on indexes and parallel access methods for the trajectory index. Several heuristic methods have been developed to decluster R-tree nodes of spatial data over multiple disks to obtain high performance for disk accesses. However, trajectory data is different from two-dimensional spatial data because of peculiarities of the temporal dimension and the connectivity of the trajectory. In this paper, we propose a declustering policy based on spatio-temporal trajectory proximity. Extensive experiments show that our STP scheme is better than other declustering schemes by about 20%.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frank, A.U., Winter, S.: CHOROCHRONOS Consortium. In: First CHOROCHRONOS Intensive Workshop CIW 1997, TECHNICAL REPORT CH-97-02Google Scholar
  2. 2.
    Schnitzer, B., Leutenegger, S.T.: Master-Client R-Trees: A New Parallel RTree Architecture. In: SSDBM 1999, pp. 68–77 (1999)Google Scholar
  3. 3.
    Seeger, B., Larson, P.-A.: Multi-disk btrees. In: Proc. ACM SIGMOD, May 1991, pp. 138–147 (1991)Google Scholar
  4. 4.
    Brinkhoff, T.: Generating Traffic Data. Bulletin of the Technical Committee on Data Engineering 26(2), 19–25 (2003)Google Scholar
  5. 5.
    Kamel, I., Faloutsos, C.: Parallel R-trees. In: ACM SIGMOD 1992, pp. 195–204 (1992)Google Scholar
  6. 6.
    Kamel, I., Faloutsos, C.: On Packing R-trees. In: CIKM, pp. 490–499 (1993)Google Scholar
  7. 7.
    Pramanik, S., Kim, M.H.: Parallel processing of large node b-trees. IEEE Transactions on Computers 39(9), 1208–1212 (1990)CrossRefGoogle Scholar
  8. 8.
    Pfsor, D., Theodoridis, Y., Jensen, C.S.: Indexing Trajectories of Moving Point Objects. Chorochoronos TR CH-99-03Google Scholar
  9. 9.
    Sellis, T.: Research Issues in Spatio-temporal Database Systems. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD 1999. LNCS, vol. 1651, pp. 5–11. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Kouramajian, V., Elmasri, R., Chaudhry, A.: Declustering Techniques for Parallelizing Temporal Access Structures. In: IEEE ICDE 1994, pp. 232–242 (1994)Google Scholar
  11. 11.
    Theodoridis, Y., Vazirgiannis, M., Sellis, T.: Spatio-Temporal Indexing for Large Multimedia Applications. In: Proceedings, IEEE ICMCS 1996, pp. 441–448 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Youngduk Seo
    • 1
  • Bonghee Hong
    • 1
  1. 1.Department of Computer EngineeringBusan National UniversityBusanRepublic of Korea

Personalised recommendations