In Support of Mesodata in Database Management Systems

  • Denise de Vries
  • Sally Rice
  • John F. Roddick
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3180)


In traditional relational database modelling there is a strict separation between the definition of the relational schema and the data itself. This simple two level architecture works well when the domains over which attributes are required to be defined are relatively simple. However, in cases where attributes need to be defined over more complex domain structures, such as graphs, hierarchies, circular lists and so on, the aggregation of domain and relational definition becomes confused and a separation of the specification of domain definition from relational structure is appropriate. This aggregation of domain definition with relational structure also occurs in XMLS and ontology definitions. In this paper we argue for a three level architecture when considering the design and development of domains for relational and semi-structured data models. The additional level facilitating more complete domain definition – mesodata – allows domains to be engineered so that attributes can be defined to possess additional intelligence and structure and thus reflect more accurately ontological considerations. We argue that the embedding of this capability within the modelling process augments, but lies outside of, current schema definition methods and thus is most appropriately considered separately.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roddick, J.F., Hornsby, K., deVries, D.: A unifying semantic distance model for determining the similarity of attribute values. In: Oudshoorn, M. (ed.) 26th Australasian Computer Science Conf (ACSC 2003), Adelaide, Australia, ACS. CRPIT, vol. 16, pp. 111–118 (2003)Google Scholar
  2. 2.
    Rice, S., Roddick, J.F.: Lattice-structured domains, imperfect data and inductive queries. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 664–674. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Allen, J.: Maintaining knowledge about temporal intervals. CACM 26, 832–843 (1983)zbMATHGoogle Scholar
  4. 4.
    Kedad, Z., Metais, E.: Dealing with semantic heterogeneity during data integration. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER 1999. LNCS, vol. 1728, pp. 325–339. Springer, Heidelberg (1999)Google Scholar
  5. 5.
    Snodgrass, R. (ed.): The TSQL2 Temporal Query Language. Kluwer Academic Publishing, New York (1995)zbMATHGoogle Scholar
  6. 6.
    Dyreson, C.E., Soo, M.D., Snodgrass, R.T.: The data model for time. In: Snodgrass, R.T. (ed.) The TSQL2 Temporal Query Language, pp. 97–101. Kluwer Academic Publishers, Dordrecht (1995)Google Scholar
  7. 7.
    Vilain, M.: A system for reasoning about time. In: National Conf. on Artificial Intelligence, Pittsburg, pp. 197–201 (1982)Google Scholar
  8. 8.
    Schneider, M.: Spatial Data Types for Database Systems. In: Schneider, M. (ed.) Spatial Data Types for Database Systems. LNCS, vol. 1288, Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. Int. Journal of Geographical Information Systems 5, 161–174 (1991)CrossRefGoogle Scholar
  10. 10.
    Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Transactions on Database Systems 21, 339–369 (1996)CrossRefGoogle Scholar
  11. 11.
    Abraham, T., Roddick, J.F.: Survey of spatio-temporal databases. Geoinformatica 3, 61–99 (1999)CrossRefGoogle Scholar
  12. 12.
    Freksa, C.: Temporal reasoning based on semi-intervals. Artificial Intelligence 54, 199–227 (1992)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Jasper, R., Uschold, M.: A framework for understanding and classifying ontology applications. In: IJCAI 1999 Workshop on Ontologies and Problem-Solving Methods( KRR5), Stockholm, Sweden (1999)Google Scholar
  15. 15.
    Wache, H., Vogele, T., Stuckenschmidt, H., Schuster, G., Neumann, H., Hubner, S.: Ontology-based integration of information a survey of existing approaches (2002)Google Scholar
  16. 16.
    Meersman, R., Jarrar, M.: Formal ontology engineering in the dogma approach. In: Meersman, R., Tari, Z. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1238–1254. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Sowa, J.F.: Conceptual graph standard (2001)Google Scholar
  18. 18.
    Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational Foundations. Brooks Cole Publishing Co., Pacific Grove (2000)Google Scholar
  19. 19.
    Roddick, J.F.: A survey of schema versioning issues for database systems. Information and Software Technology 37, 383–393 (1995)CrossRefGoogle Scholar
  20. 20.
    Klein, M., Fensel, D., Kiryakov, A., Ognyanov, D.: Ontology versioning and change detection on the web. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 197–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Tan, L., Katayama, T.: Meta operations for type management in object-oriented databases - a lazy mechanism for schema evolution. In: Kim, W., Nicolas, J.M., Nishio, S. (eds.) First Int. Conf. on Deductive and Object-Oriented Databases, DOOD 1989, Kyoto, Japan, pp. 241–258. North-Holland, Amsterdam (1989)Google Scholar
  22. 22.
    MySQL: SQL shareware software, MySQL AB Co. (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Denise de Vries
    • 1
  • Sally Rice
    • 1
    • 2
  • John F. Roddick
    • 1
  1. 1.School of Informatics and EngineeringFlinders University of South AustraliaAdelaideSouth Australia
  2. 2.School of Computer and Information ScienceUniversity of South AustraliaMawson LakesSouth Australia

Personalised recommendations