A Haptic Sculpting Technique Based on Volumetric Representation

  • Laehyun Kim
  • Se Hyung Park
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3179)



We present a novel haptic sculpting technique where the user intuitively adds to and carves out material from a volumetric model using virtual sculpting tools in the similar way to handling real clay. Haptic rendering and model deformation are implemented based on volumetric implicit surface extracted from geometric model. We enhance previous volume-based haptic sculpting systems. Collision and force computation are implemented on an offset surface rather than the implicit surface to provide consistent contact sensation in both visual and haptic displays. In order to bridge the gap between fast haptic process (1 KHz) and much slower visual update frequency ( 30Hz), the system generates intermediate implicit surfaces between two consecutive physical models being deformed resulting in smooth force rendering. Magnetic surface established between an offset and the implicit surface is used to simulate a feeling of pulling in adding operation. The volumetric model being sculpted is visualized as a geometric model which is adaptively polygonized according to the surface complexity. We also introduce various visual effects for the real-time sculpting system including mesh-based solid texturing, painting, and embossing/engraving techniques.


Haptic sculpting Volumetric implicit surface Interactive shape modeling Haptic rendering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avila, R.S., Sobierajski, L.M.: A Haptic Interaction Method for Volume Visualization. IEEE Visualization proceedings, 197-204 (1996)Google Scholar
  2. 2.
    Andreas Barentzen, J.: Octree-based Volume Sculpting. IEEE Visulalization proceedings, 9-12 (1998)Google Scholar
  3. 3.
    Bloomenthal, J., et al.: Introduction to Implicit surface. Morgan Kaufmann Publishers, Inc., San Francisco (1997)Google Scholar
  4. 4.
    Foskey, M., Otaduy, M.A., Lin, M.C.: ArtNova: Touch-Enabled 3D Model Design. IEEE Virtual Reality proceedings, 119-126 (2002)Google Scholar
  5. 5.
    SensAble Technologies Inc. freeform modeling system (1999),
  6. 6.
    Galyean, T.A., Hughes, J.F.: Sculpting: An interactive volumetric modeling technique. ACM SIGGRAPH proceedings, 267-274 (1991)Google Scholar
  7. 7.
    Hua, J., Qin, H.: Haptic Sculpting of Volumetric Implicit Functions. In: The ninth Pacific Conference on Computer Graphics and Applications (2001)Google Scholar
  8. 8.
    Kim, L., Sukhatme, G.S., Desbrun, M.: A Haptic Rendering Technique Based on Hybrid Surface Represenation. IEEE computer graphics and applications as a special issue of Haptic Rendering: Beyond visual computing 24(2), 66–75 (2004)Google Scholar
  9. 9.
    Kim, L., Sukhatme, G.S., Desbrun, M.: Haptic Editing for Decoration and Material Properties. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 213–221 (2003)Google Scholar
  10. 10.
    Lorensen, W.E., Cline, H.E.: Marching Cubes: a high resolution 3D surface reconstruction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  11. 11.
    Mauch, S.: A Fast Alogorithm for Computing the Closest Point and Distance Transform. Technical Report at Caltech. sean/ (2000),
  12. 12.
    McDonnell, K.T., Qin, H., Wlodarczyk, R.A.: Virtual Clay: A Real-time Sculpting System with Haptic Toolkits. In: ACM Symposium on Interactive 3D Techniques, pp. 179–190 (2001)Google Scholar
  13. 13.
    Perlin, K.: An Image Synthesizer. ACM SIGGRAPH proceedings 19(3), 287–296 (1985)CrossRefGoogle Scholar
  14. 14.
    Perry, R.N., Frisken, S.F.: Kizamu: A system for sculpting digital charaters. ACM SIGGRAPH proceedings, 47-56 (2001)Google Scholar
  15. 15.
    Petersik, A., Pflesser, B., Tiede, U., Hohne, K., Leuwer, R.: In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 194–202. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Ruspini, D.C., Kolarov, K., Khatib, O.: The haptic display of complex graphical environment. ACM SIGGRAPH proceedings 1, 295–301 (1997)Google Scholar
  17. 17.
    Ruspini, D.C., Khatib, O.: Dynamic Models For Haptic Rendering Systems. Advances in Robot Kinematics, 523-532 (1998)Google Scholar
  18. 18.
    Thompson II, T.v., Cohen, E.: Direct Haptic Rendering of Complex Trimmed NURBS Models. Haptic Interfaces for Virtual Environment and Teleoperator System (1999)Google Scholar
  19. 19.
    Velho, L., Figureiredo, L.H.D., Gomes, J.: A Unified Approach for Hierarchical Adaptive Tesselation of Surfaces. ACM Transactions on Graphics 18(4), 329–360 (1999)CrossRefGoogle Scholar
  20. 20.
    Yoshitaka, A., Kumano, T., Ogino, K.: Intermediate Representation for Stiff Virtual Objects. In: IEEE Virtual Reality Annual Symposium, pp. 203–210 (1995)Google Scholar
  21. 21.
    Zilles, C., Salisbury, J.K.: A Constraint-based God-object Method For Haptic Display. Haptic Interfaces for Virtual Environment and Teleoperator Systems, 146-150 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Laehyun Kim
    • 1
  • Se Hyung Park
    • 1
  1. 1.System Research DivisionKorea Institute of Science and TechnologySeoulKorea

Personalised recommendations