Basics of Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy

  • Gunnar Brix
  • Heinrich Kolem
  • Wolfgang R. Nitz
  • Michael Bock
  • Alexander Huppertz
  • Cristoph J. Zech
  • Olaf Dietrich


In this chapter, the basic principles of magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) (Sects. 2.2, 2.3, and 2.4), the technical components of the MRI scanner (Sect. 2.5), and the basics of contrast agents and the application thereof (Sect. 2.6) are described. Furthermore, flow phenomena and MR angiography (Sect. 2.7) as well as diffusion and tensor imaging (Sect. 2.7) are elucidated.


Transverse Magnetization Magn Reson Image Radio Frequency Pulse Longitudinal Magnetization Radio Frequency Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue NMR relaxation times and relaxation mechanisms from 1 to 100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448PubMedCrossRefGoogle Scholar
  2. Harris RK (1986) Nuclear magnetic resonance spectroscopy. Longman Scientific Technical, HarlowGoogle Scholar
  3. Abragam A (1986) Principles of nuclear magnetism. Oxford University Press, LondonGoogle Scholar
  4. Becker ED (1980) High-resolution NMR. Academic, New YorkGoogle Scholar
  5. Harris RK (1986) Nuclear magnetic resonance spectroscopy. Longman Scientific Technical, HarlowGoogle Scholar
  6. Hauser KH, Kalbitzer KR (1991) NMR in medicine and biology. Springer, Berlin Heidelberg New YorkGoogle Scholar
  7. Levitt MH (2001) Spin dynamics: basics of nuclear magnetic resonance. Wiley, New York Google Scholar
  8. Slichter CP (2006) Principles of magnetic resonance, 3rd edn. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  9. Barrett HH, Myers K (2004) Foundations of image science. Wiley, New JerseyGoogle Scholar
  10. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New YorkGoogle Scholar
  11. Oppelt A (2005) (ed) Imaging systems for medical diagnostics. Publicis MCD, ErlangenGoogle Scholar
  12. Vlaardingerbroek MT, den Boer JA (2004) Magnetic resonance imaging: theory and practice. Springer, Berlin Heidelberg New YorkGoogle Scholar
  13. Bottomley PA, Hardy CJ, Argersinger RE et al (1987) A review of 1H nuclear magnetic resonance relaxation in pathology: are T1 and T2 diagnostic? Med Phys 14:1–37PubMedCrossRefGoogle Scholar
  14. Brix G, Schad LR, Lorenz WJ (1990) Evaluation of proton density by magnetic resonance imaging: phantom experiments and analysis of multiple component proton transverse relaxation. Phys Med Biol 35:53–66PubMedCrossRefGoogle Scholar
  15. Feinberg DA, Hale JD, Watts JC et al (1986) Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 161:527–531PubMedGoogle Scholar
  16. Frahm J, Haase A, Hänicke W, Matthaei D, Bomsdorf H, Helzel T (1985) chemical shift selective MR imaging using a whole-body magnet. Radiology 156:441–444PubMedGoogle Scholar
  17. Haacke EM, Wielopolski PA, Tkach JA (1991) A comprehensive technical review of short TR, fast, magnetic resonance imaging. Rev Magn Res Med 3:53Google Scholar
  18. Haase A (1990) Snapshot FLASH MRI. Application to T 1, T 2, and chemical-shift imaging. Magn Reson Med 13:77–89PubMedCrossRefGoogle Scholar
  19. Haase A, Frahm J, Hänicke W, Matthaei D (1985) 1H-NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30:341–344PubMedCrossRefGoogle Scholar
  20. Haase A, Frahm J, Matthaei D et al (1986) FLASH imaging: rapid NMR imaging using low flip angle pulses. J Magn Reson 67:258–266Google Scholar
  21. Haase A, Matthaei W, Bartkowski R, Duhmke E, Leibfritz D (1989) Inversion recovery snapshot FLASH MR imaging. J Comput Assist Tomogr 13:1036PubMedCrossRefGoogle Scholar
  22. Henning J, Nauerth A, Friedburg H (1986) RARE-imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefGoogle Scholar
  23. Mansfield P, Mosley AA, Baines T (1976) Fast scan proton density imaging by NMR. J Phys 9:271–278Google Scholar
  24. Mugler JP, Brookeman JR (1990) Three-dimensional magnetization-prepared rapid gradientecho imaging (3D MP RAGE). Magn Res Med 15:152CrossRefGoogle Scholar
  25. Mulkern RV, Wong STS, Winalski C, Jolesz FA (1990) Contrast manipulation and artifact assessment of 2D and 3D RARE sequences. Magn Reson Imag 8:557–566CrossRefGoogle Scholar
  26. Oppelt A, Graumann R, Barfuß H, Fischer H, Hartl W, Schajor W (1986) FISP: eine neue schnelle Pulssequenz für die Kernspintomographie. Electromedica 54:15–18Google Scholar
  27. Pfannenstiel P, Just M, Higer HP et al (1987) Erste klinische Ergebnisse der Gewebecharakterisierung durch T1, T2 und Protonendichte bei der Kernspintomographie. RoFo 146:591–596PubMedGoogle Scholar
  28. Wolff S, Balaban R (1989) Magnetization transfer via cross relaxation. Magn Reson Med 10:135–144PubMedCrossRefGoogle Scholar
  29. Bruder H, Fischer H, Graumann R, Deimling M (1988) A new steady-state sequence for simultaneous acquisition of two MR images with clearly different contrast. Magn Reson Med 7:35PubMedCrossRefGoogle Scholar
  30. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging: physical principles and sequence design. Wiley, New YorkGoogle Scholar
  31. Heidemann RM, Özsarlak Ö, Parizel PM et al (2003) A brief review of parallel magnetic resonance imaging. Eur Radiology 13:2323–2337CrossRefGoogle Scholar
  32. Higer HP, Bielke G (1986) Gewebecharakterisierung mit T 1, T 2 und Protonendichte: Traum und Wirklichkeit. ROFO 144/5:597–605Google Scholar
  33. Kiefer B, Grässner J, Hausmann R (1994) Image acquisition in a second with half-Fourier acquired single shot turbo spin echo. JMRI 4:86Google Scholar
  34. Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29:355–373 [see also German patent no. 2755956 C2 from 15 December 1977, Government Patent Office, Germany)Google Scholar
  35. Margosian P, Schmitt F, Purdy D (1986) Faster MR imaging: imaging with half the data. Health Care Instrum 1:195Google Scholar
  36. Oppelt A (ed) (2005) Imaging systems for medical diagnostics. Publicis MCD, ErlangenGoogle Scholar
  37. Oshio K, Feinberg DA (1991) Magn Reson Med 20:344Google Scholar
  38. Pfannenstiel P, Just M, Higer HP et al. (1987) Erste klinische Ergebnisse der Gewebecharakterisierung durch T 1, T 2 und Protonendichte bei der Kernspintomographie [in German]. RoFo 146/5:591–596Google Scholar
  39. Vlaardingerbroek MT, den Boer JA (2004) Magnetic resonance imaging: theory and practice. Springer, Berlin Heidelberg New YorkGoogle Scholar
  40. Chen CN, Hoult DI (1989) Biomedical magnetic resonance technology. Adam Hilger, Bristol Google Scholar
  41. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29:411–415 PubMedCrossRefGoogle Scholar
  42. Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173:255–263 PubMedGoogle Scholar
  43. Felblinger J, Lehmann C, Boesch C (1994) Electrocardiogram acquisition during MR examinations for patient monitoring and sequence triggering. Magn Reson Med 32:523–529 PubMedCrossRefGoogle Scholar
  44. Goldman RI, Stern JM, Engel J Jr, Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol 111:1974–1980 PubMedCrossRefGoogle Scholar
  45. Harvey PR (1999) The modular (twin) gradient coil—high resolution, high contrast, diffusion weighted EPI at 1.0 Tesla.PubMedGoogle Scholar
  46. Harvey PR, Mansfield P (1994) Resonant trapezoidal gradient generation for use in echo planar imaging. Magn Reson Imaging 12:93–100 PubMedCrossRefGoogle Scholar
  47. Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87:417–420 PubMedCrossRefGoogle Scholar
  48. Jin J (1999) Electromagnetic analysis and design in magnetic resonance imaging. CRC Press, Boca RatonGoogle Scholar
  49. Kangarlu A, Robitaille PML (2000) Biological effects and health implications in magnetic resonance imaging. Concepts Magn Reson 12:321–359 CrossRefGoogle Scholar
  50. Kugel H, Bremer C, Puschel M, Fischbach R, Lenzen H, Tombach B, Van Aken H, Heindel W (2003) Hazardous situation in the MR bore: induction in ECG leads causes fire. Eur Radiol 13:690–694PubMedGoogle Scholar
  51. Liu F, Zhao H, Crozier S (2003) On the induced electric field gradients in the human body for magnetic stimulation by gradient coils in MRI. IEEE Trans Biomed Eng 50:804–15 PubMedCrossRefGoogle Scholar
  52. Mansfield P, Chapman B (1986) Active magnetic screening of coils for static and time-dependent magnetic field generated in NMR imaging. J Phys E: Sci Instrum 19:540–545 CrossRefGoogle Scholar
  53. Mansfield P, Harvey PR (1993) Limits to neural stimulation in echo planar imaging. Magn Reson Med 29:746–758 PubMedCrossRefGoogle Scholar
  54. Mispelter J, Lupu M, Briguet A (2006) NMR probeheads for biophysical and biomedical experiments: theoretical principles and practical guidelines. World Scientific, London Google Scholar
  55. Muri RM, Felblinger J, Rosler KM, Jung B, Hess CW, Boesch C (1998) Recording of electrical brain activity in a magnetic resonance environment: distorting effects of the static magnetic field. Magn Reson Med 39:18–22 PubMedCrossRefGoogle Scholar
  56. Oppelt A (ed) (2005) Imaging systems for medical diagnostics: fundamentals, technical solutions and applications for systems applying ionizing radiation, nuclear magnetic resonance and ultrasound, 2nd edn. Publicis, New York Google Scholar
  57. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962 PubMedCrossRefGoogle Scholar
  58. Robitaille PM, Warner R, Jagadeesh J, Abduljalil AM, Kangarlu A, Burgess RE, Yu Y, Yang L, Zhu H, Jiang Z, Bailey RE, Chung W, Somawiharja Y, Feynan P, Rayner DL (1999) Design and assembly of an 8 Tesla whole-body MR scanner. J Comput Assist Tomogr 23:808–820 PubMedCrossRefGoogle Scholar
  59. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM (1990) The NMR phased array. Magn Reson Med 16:192–225 PubMedCrossRefGoogle Scholar
  60. Schaefer DJ (1998) Safety aspects of switched gradient fields. Magn Reson Imaging Clin N Am 6:731–748 PubMedGoogle Scholar
  61. Schmitt F, Stehling MK, Turner R (1998) Echo planar imaging: theory, technique and application. Springer, Berlin Heidelberg New YorkGoogle Scholar
  62. Shellock FG, Myers SM, Kimble KJ (1992) Monitoring heart rate and oxygen saturation with a fiber-optic pulse oximeter during MR imaging. AJR Am J Roentgenol 158:663–664 PubMedGoogle Scholar
  63. Sijbersa J, Van Audekerke J, Verhoye M, Van der Linden A, Van Dyck D (2000) Reduction of ECG and gradient related artefacts in simultaneously recorded human EEG/MRI data. Magn Reson Imaging 18:881–886 PubMedCrossRefGoogle Scholar
  64. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603 PubMedCrossRefGoogle Scholar
  65. Turner R (1993) Gradient coil design: a review of methods. Magn Reson Imaging 11:903–920 PubMedCrossRefGoogle Scholar
  66. Vlaardingerbroek MT, den Boer JA, Luiten A (2002) Magnetic resonance imaging: theory and practice, 2nd rev. edn. Springer, Berlin Heidelberg New York Google Scholar
  67. Webb P, Macovski A (1991) Rapid, fully automatic, arbitrary-volume in vivo shimming. Magn Reson Med 20:113–122 PubMedCrossRefGoogle Scholar
  68. Welch EB, Manduca A, Grimm RC, Ward HA, Jack CR Jr (2002) Spherical navigator echoes for full 3D rigid body motion measurement in MRI. Magn Reson Med 47:32–41 PubMedCrossRefGoogle Scholar
  69. Akeson P, Jonsson E, Haugen I, Holtas S (1995) Contrast-enhanced MRI of the central nervous system: comparison between gadodiamide injection and Gd-DTPA. Neuroradiology 37:229–233PubMedCrossRefGoogle Scholar
  70. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P, Saini S, Maravilla KR, Feldman DE, Schmiedl UP, Brunberg JA, Francis IR, Harms SE, Som PM, Tempany CM (2003) Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology 228:777–788PubMedCrossRefGoogle Scholar
  71. Barkhausen J, Ebert W, Debatin JF, Weinmann HJ (2002) Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol 39:1392–1398PubMedCrossRefGoogle Scholar
  72. Bartolozzi C, Donati F, Cioni D et al (2004) Detection of colorectal liver metastases: a prospective multicenter trial comparing unenhanced MRI, MnDPDP-enhanced MRI, and spiral CT. Eur Radiol 14:14–20PubMedCrossRefGoogle Scholar
  73. Ba-Ssalamah A, Heinz-Peer G, Schima W et al (2000) Detection of focal hepatic lesions: comparison of unenhanced and SHU 555 A-enhanced MR imaging versus biphasic helical CTAP. J Magn Reson Imaging 11:665–672PubMedCrossRefGoogle Scholar
  74. Bastianello S, Gasperini C, Paolillo A et al (1998) Sensitivity of enhanced MR in multiple sclerosis: effects of contrast dose and magnetization transfer contrast. AJNR 19:1863–1867PubMedGoogle Scholar
  75. Bellin MF, Lebleu L, Meric JB (2003) Evaluation of retroperitoneal and pelvic lymph node metastases with MRI and MR lymphangiography. Abdom Imaging 28:155–163PubMedCrossRefGoogle Scholar
  76. Bentzen L, Vestergaard-Poulsen P, Nielsen T et al (2005) Intravascular contrast agent-enhanced MRI measuring contrast clearance and tumor blood volume and the effects of vascular modifiers in an experimental tumor. Int J Radiat Oncol Biol Phys 61:1208–1215PubMedCrossRefGoogle Scholar
  77. Bhartia B, Ward J, Guthrie JA, Robinson PJ (2003) Hepatocellular carcinoma in cirrhotic livers: double-contrast thin-section MR imaging with pathologic correlation of explanted tissue. AJR Am J Roentgenol 180:577–584PubMedGoogle Scholar
  78. Bluemke DA, Sahani D, Amendola M, Balzer T, Breuer J et al (2005) Efficacy and safety of MR imaging with liver-specific contrast agent: US multicenter phase III study. Radiology 237:89–98PubMedCrossRefGoogle Scholar
  79. Bozzao A, Floris R, Baviera ME, Apruzzese A, Simonetti G (2001) Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol 22:1030–1036PubMedGoogle Scholar
  80. Brasch RC (1991) Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med 22:282–287PubMedCrossRefGoogle Scholar
  81. Brix G, Kiessling F, Lucht R et al (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429PubMedCrossRefGoogle Scholar
  82. Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA (2007) Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol 188:586–592 PubMedCrossRefGoogle Scholar
  83. Brown G, Richards CJ, Bourne MW, Newcombe RG, Radcliffe AG, Dallimore NS, Williams GT (2003) Morphologic predictors of lymph node status in rectal cancer with use of high-spatial-resolution MR imaging with histopathologic comparison. Radiology 227:371–377PubMedCrossRefGoogle Scholar
  84. Bruening R, Berchtenbreiter C, Holzknecht N, Essig M et al (2000) Effects of three different doses of a bolus injection of gadodiamide: assessment of regional cerebral blood volume maps in a blinded reader study. AJNR Am J Neuroradiol 21:1603–1610PubMedGoogle Scholar
  85. Brugieres P, Gaston A, Degryse HR et al (1994) Randomized double blind trial of the safety and efficacy of two Gd complexes (Gd-DTPA and Gd-DOTA). Neuroradiology 36:27–30PubMedCrossRefGoogle Scholar
  86. Bundesinstitut für Arzneimittel und Medizinprodukte (Federal Institute for Drugs and Medical Devices) (2007) Public assessment reports increased risk of nephrogenic fibrosing dermopathy/nephrogenic systemic fibrosis and Gd-containing MRI contrast agents. Cited 21 March 2007Google Scholar
  87. Burrel M, Llovet JM, Ayuso C et al (2003) MRI angiography is superior to helical CT for detection of HCC prior to liver transplantation: an explant correlation. Hepatology 38:1034–1042PubMedGoogle Scholar
  88. Burstein D, Taratuta E, Manning WJ (1991) Factors in myocardial “perfusion” imaging with ultrafast MRI and Gd-DTPA administration. Magn Reson Med 20:299–305PubMedCrossRefGoogle Scholar
  89. Cavagna FM, Lorusso V, Anelli PL, Maggioni F, de Haen C (2002) Preclinical profile and clinical potential of gadocoletic acid trisodium salt (B22956/1), a new intravascular contrast medium for MRI. Acad Radiol 9(Suppl 2):S491–S494PubMedCrossRefGoogle Scholar
  90. Chambon C, Clement O, Blanche RL et al (1993) Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging 11:509–519PubMedCrossRefGoogle Scholar
  91. Claussen C, Kornmesser W, Laniado M, Kaminsky S, Hamm B, Felix R (1988) Oral contrast media for magnetic resonance tomography of the abdomen. III. Initial patient research with Gd-DTPA. RoFo 148:663–689Google Scholar
  92. Colosimo C, Ruscalleda J, Korves M et al (2001) Detection of intracranial metastases: a multicenter, intrapatient comparison of gadopentate dimeglumine-enhanced MRI with routinely used contrast agents at equal dosage. Invest Radiol 36:72–81PubMedCrossRefGoogle Scholar
  93. Colosimo C, Knopp MV, Barreau X et al (2004) A comparison of Gd-BOPTA and Gd-DOTA for contrast-enhanced MRI of intracranial tumors. Neuroradiology 46:655–665 PubMedCrossRefGoogle Scholar
  94. Colosimo C, Demaerel P, Tortori-Donati P et al (2005) Comparison of gadopentate dimeglumine (Gd-BOPTA) with gadopentetate dimeglumine (Gd-DTPA) for enhanced MR imaging of brain and spine tumors in children. Pediatr Radiol 35:501–510PubMedCrossRefGoogle Scholar
  95. Corot C, Petry KG, Trivedi R, Saleh A, Jonkmanns C, Le Bas JF, Blezer E, Rausch M, Brochet B, Foster-Gareau P, Baleriaux D, Gaillard S, Dousset V (2004) Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39:619–625PubMedCrossRefGoogle Scholar
  96. Curvo-Semedo L, Diniz M, Migueis J, Juliao MJ, Martins P, Pinto A, Caseiro-Alves F (2006) USPIO-enhanced magnetic resonance imaging for nodal staging in patients with head and neck cancer. J Magn Reson Imaging 24:128–131 CrossRefGoogle Scholar
  97. Daldrup-Link HE, Brasch RC (2003) Macromolecular contrast agents for MR mammography: current status. Eur Radiol 13:354–365PubMedGoogle Scholar
  98. Daldrup H, Shames DM, Wendland M et al (1998) Correlation of dynamic contrast-enhanced magnetic resonance imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. Pediatr Radiol 28:67–78PubMedCrossRefGoogle Scholar
  99. Daldrup-Link HE, Rydland J, Helbich TH et al (2003) Quantification of breast tumor microvascular permeability with feruglose-enhanced MR imaging: initial phase II multicenter trial. Radiology 229:885–892PubMedCrossRefGoogle Scholar
  100. D’Arienzo A, Scaglione G, Vicinanza G, Manguso F, Bennato R, Belfiore G, Imbriaco M, Mazzacca G (2000) Magnetic resonance imaging with ferumoxil, a negative superparamagnetic oral contrast agent, in the evaluation of ulcerative colitis. Am J Gastroenterol 95:720–724 PubMedCrossRefGoogle Scholar
  101. De Ridder F, De Maeseneer M, Stadnik T, Luypaert R, Osteaux M (2001) Severe adverse reactions with contrast agents for magnetic resonance: clinical experience in 30,000 MR examinations. JBR-BTR 84:150–152PubMedGoogle Scholar
  102. Debatin JF, Patak MA (1999) MRI of the small and large bowel. Eur Radiol 9:1523–1534PubMedCrossRefGoogle Scholar
  103. Del Frate C, Bazzocchi M, Mortele KJ et al (2002) Detection of liver metastases: comparison of gadopentate dimeglumine-enhanced and ferumoxides-enhanced MR imaging examinations. Radiology 225:766–772PubMedCrossRefGoogle Scholar
  104. Deserno WM, Harisinghani MG, Taupitz M et al (2004) Urinary bladder cancer: preoperative nodal staging with ferumoxtran-10-enhanced MR imaging. Radiology 233:449–456PubMedCrossRefGoogle Scholar
  105. Dijke C van, Brasch R, Roberts T et al (1996) Mammary carcinoma model: correlation of macromolecular contrast-enhanced MR imaging characterization of tumor microvasculature and histologic capillary density. Radiology 198:813–818PubMedGoogle Scholar
  106. Dirksen MS, Lamb HJ, Kunz P, Robert P, Corot C, de Roos A (2003) Improved MR coronary angiography with use of a new rapid clearance blood pool contrast agent in pigs. Radiology 227:802–808PubMedCrossRefGoogle Scholar
  107. Doerfler A, Eckstein HH, Eichbaum M et al (2001) Perfusion-weighted magnetic resonance imaging in patients with carotid artery disease before and after carotid endarterectomy. J Vasc Surg 34:587–593PubMedCrossRefGoogle Scholar
  108. Edelman RR (2004) Contrast-enhanced MR imaging of the heart: overview of the literature. Radiology 232:653–668PubMedCrossRefGoogle Scholar
  109. Essig M, Wenz F, Scholdei R et al (2002) Effect of contrast media dosage and contrast media extravasation on dynamic susceptibility-contrast enhanced dynamic echo planar imaging of cerebral gliomas. Acta Radiol 43:354–359PubMedCrossRefGoogle Scholar
  110. Essig M, Waschkies M, Wenz F, Debus J, Hentrich HR, Knopp MV (2003) Assessment of brain metastases by means of dynamic susceptibility contrast enhanced MRI – initial results. Radiology 228:193–199PubMedCrossRefGoogle Scholar
  111. Essig M, Giesel F, Le-Huu M, Stieltjes B, von Tengg H, Weber MA (2004) Perfusion MRI in CNS disease: current concepts. Neuroradiology 46(Suppl 2):S201–S207PubMedCrossRefGoogle Scholar
  112. Essig M, Lodemann KP, Le-Huu M, Bruning R, Kirchin M, Reith W (2006) Intraindividual comparison of gadopentate dimeglumine and gadobutrol for cerebral magnetic resonance perfusion imaging at 1.5 T. Invest Radiol 41:256–263PubMedCrossRefGoogle Scholar
  113. Fink C, Bock M, Kiessling F, Lichy MP, Krissak R, Zuna I, Schmahl A, Delorme S, Kauczor HU (2004) Time-resolved contrast-enhanced three-dimensional pulmonary MR-angiography: 1 M gadobutrol vs. 0.5 M gadopentetate dimeglumine. J Magn Reson Imaging 19:202–208PubMedCrossRefGoogle Scholar
  114. Gehl HB, Bourne M, Grazioli L, Moller A, Lodemann KP (2001) Off-site evaluation of liver lesion detection by Gd-BOPTA-enhanced MR imaging. Eur Radiol 11:187–192PubMedCrossRefGoogle Scholar
  115. Gibbs GF, Huston J 3rd, Bernstein MA, Riederer SJ, Brown RD Jr (2005) 3.0-Tesla MR angiography of intracranial aneurysms: comparison of time-of-flight and contrast-enhanced techniques. J Magn Reson Imaging 21:97–102 PubMedCrossRefGoogle Scholar
  116. Goyen M, Debatin JF (2003) Gadopentate dimeglumine (MultiHance) for magnetic resonance angiography: review of the literature. Eur Radiol 13(Suppl 3):N19–N27PubMedCrossRefGoogle Scholar
  117. Goyen M, Lauenstein TC, Herborn CU, Debatin JF, Bosk S, Ruehm SG (2001) 0.5 M Gd chelate (Magnevist) versus 1.0 M Gd chelate (Gadovist): dose-independent effect on image quality of pelvic three-dimensional MR-angiography. J Magn Reson Imaging 14:602–607PubMedCrossRefGoogle Scholar
  118. Goyen M, Herborn CU, Vogt FM, Kroger K, Verhagen R, Yang F, Bosk S, Debatin JF, Ruehm SG (2003) Using a 1 M Gd-chelate (gadobutrol) for total-body three-dimensional MR angiography: Preliminary experience. J Magn Reson Imaging 17:565-571PubMedCrossRefGoogle Scholar
  119. Goyen M, Edelman M, Perreault P, O‘Riordan E, Bertoni H, Taylor J, Siragusa D, Sharafuddin M, Mohler ER 3rd, Breger R, Yucel EK, Shamsi K, Weisskoff RM (2005) MR angiography of aortoiliac occlusive disease: a phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology 236:825–833PubMedCrossRefGoogle Scholar
  120. Grazioli L, Morana G, Federle MP et al (2001) Focal nodular hyperplasia: morphologic and functional information from MR imaging with gadopentate dimeglumine. Radiology 221:731–739PubMedCrossRefGoogle Scholar
  121. Grazioli L, Morana G, Kirchin MA, Schneider G (2005) Accurate differentiation of focal nodular hyperplasia from hepatic adenoma at gadopentate dimeglumine-enhanced MR imaging: prospective study. Radiology 236:166–177PubMedCrossRefGoogle Scholar
  122. Grossman RI, Rubin DI, Hunter G et al (2000) Magnetic resonance imaging in patients with central nervous system pathology: a comparison of OptiMARK (Gd-DTPABMEA)and Magnevist (Gd-DTPA). Invest Radiol 35:412–419PubMedCrossRefGoogle Scholar
  123. Haen C, Anelli PL, Lorusso V, Morisetti A, Maggioni F, Zheng J, Uggeri F, Cavagna FM (2006) Gadocoletic acid trisodium salt (b22956/1): a new blood pool magnetic resonance contrast agent with application in coronary angiography. Invest Radiol 41:279–291PubMedCrossRefGoogle Scholar
  124. Halavaara J, Breuer J, Ayuso C, Balzer T, Bellin MF et al (2006) Liver tumor characterization: comparison between liver-specific gadoxetic acid disodium-enhanced MRI and biphasic CT—a multicenter trial. J Comput Assist Tomogr 30:345–354 PubMedCrossRefGoogle Scholar
  125. Haldemann Heusler RC, Wight E, Marincek B (1995) Oral superparamagnetic contrast agent (ferumoxsil): tolerance and efficacy in MR imaging of gynecologic diseases. J Magn Reson Imaging 5:385–391PubMedCrossRefGoogle Scholar
  126. Harisinghani MG, Barentsz J, Hahn PF et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491–2499PubMedCrossRefGoogle Scholar
  127. Haustein J, Laniado M, Niendorf HP et al (1993) Triple-dose versus standard-dose gadopentetate dimeglumine: a randomized study in 199 patients. Radiology 186:855–860PubMedGoogle Scholar
  128. Heesakkers RA, Futterer JJ, Hovels AM, van den Bosch HC, Scheenen TW, Hoogeveen YL, Barentsz JO (2006) Prostate cancer evaluated with ferumoxtran-10-enhanced T 2*-weighted MR Imaging at 1.5 and 3.0 T: early experience. Radiology 239:481–487PubMedCrossRefGoogle Scholar
  129. Heiland S, Reith W, Forsting M, Sartor K (2001) How do concentration and dosage of the contrast agent affect the signal change in perfusion-weighted magnetic resonance imaging? A computer simulation. Magn Reson Imaging 19:813–820PubMedCrossRefGoogle Scholar
  130. Herborn CU, Lauenstein TC, Vogt FM, Lauffer RB, Debatin JF, Ruehm SG (2002) Interstitial MR lymphography with MS-325: characterization of normal and tumor-invaded lymph nodes in a rabbit model. AJR Am J Roentgenol 179:1567–1572PubMedGoogle Scholar
  131. Herborn CU, Vogt FM, Lauenstein TC, Goyen M, Dirsch O, Corot C, Debatin JF, Ruehm SG (2003) Assessment of normal, inflammatory, and tumor-bearing lymph nodes with contrast-enhanced interstitial magnetic resonance lymphography: preliminary results in rabbits. J Magn Reson Imaging 18:328–335PubMedCrossRefGoogle Scholar
  132. Huppertz A, Balzer T, Blakeborough A et al (2004) Improved detection of focal liver lesions at MR imaging: multicenter comparison of gadoxetic acid-enhanced MR images with intraoperative findings. Radiology 230:266–275PubMedCrossRefGoogle Scholar
  133. Huppertz A, Haraida S, Kraus A, Zech CJ et al (2005) Enhancement of focal liver lesions at gadoxetic acid-enhanced MR imaging: correlation with histopathologic findings and spiral CT—initial observations. Radiology 234:468–478 PubMedCrossRefGoogle Scholar
  134. Imai Y, Murakami T, Yoshida S et al (2000) Superparamagnetic iron oxide-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading. Hepatology 32:205–212PubMedCrossRefGoogle Scholar
  135. Jager GJ, Barentsz JO, Oosterhof GO, Witjes JA, Ruijs SJ (1996) Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a three-dimensional TI-weighted magnetization-prepared-rapid gradient-echo sequence. AJR Am J Roentgenol 167:1503–1507PubMedGoogle Scholar
  136. Johansson LO, Bjerner T, Bjornerud A, Ahlstrom H, Tarlo KS, Lorenz CH (2002) Utility of NC100150 injection in cardiac MRI. Acad Radiol 9(Suppl 1):S79-S81 PubMedCrossRefGoogle Scholar
  137. Kim YK, Lee JM, Kim CS, Chung GH, Kim CY, Kim IH (2005) Detection of liver metastases: gadopentate dimeglumine-enhanced three-dimensional dynamic phases and one-h delayed phase MR imaging versus superparamagnetic iron oxide-enhanced MR imaging. Eur Radiol 15:220–228PubMedCrossRefGoogle Scholar
  138. Kirchin MA, Pirovano G, Venetianer C, Spinazzi A (2001) Safety assessment of gadopentate dimeglumine (MultiHance): extended clinical experience from phase I studies to post-marketing surveillance. J Magn Reson Imaging 14:281–294 PubMedCrossRefGoogle Scholar
  139. Knopp MV, Weiss E, Sinn HP et al (1999) Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imag 10:260–266CrossRefGoogle Scholar
  140. Knopp MV, Runge VM, Essig M et al (2004) Primary and secondary brain tumors at MR imaging: bicentric intraindividual crossover comparison of gadopentate dimeglumine and gadopentetate dimeglumine. Radiology 230:55–64PubMedCrossRefGoogle Scholar
  141. Kobayashi H, Sato N, Kawamoto S et al (2001) 3D MR angiography of intratumoral vasculature using a novel macromolecular MR contrast agent. Magn Reson Med 46:579–585PubMedCrossRefGoogle Scholar
  142. Koh DM, Brown G, Temple L et al (2004) Rectal cancer: mesorectal lymph nodes at MR imaging with USPIO versus histopathologic findings – initial observations. Radiology 231:91–99PubMedCrossRefGoogle Scholar
  143. Kroft LJ, de Roos A (1995) Blood pool contrast agents for cardiovascular MR Imaging. J Magn Reson Imaging 10:395–403CrossRefGoogle Scholar
  144. Kuhl CK, Mielcareck P, Klaschik S et al (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions? Radiology 211:101–110PubMedGoogle Scholar
  145. Kuhl CK, Schild HH, Morakkabati N (2005) Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology 236:789–800PubMedCrossRefGoogle Scholar
  146. Kwak HS, Lee JM, Kim CS (2004) Preoperative detection of hepatocellular carcinoma: comparison of combined contrast-enhanced MR imaging and combined CT during arterial portography and CT hepatic arteriography. Eur Radiol 14:447–457PubMedCrossRefGoogle Scholar
  147. La Noce A, Stoelben S, Scheffler K, Hennig J, Lenz HM, La Ferla R, Lorusso V, Maggioni F, Cavagna F (2002) B22956/1, a new intravascular contrast agent for MRI: first administration to humans—preliminary results. Acad Radiol 9(Suppl 2):S404–S406PubMedCrossRefGoogle Scholar
  148. Lauffer RB, Parmelee DJ, Dunham SU, Ouellet HS, Dolan RP, Witte S, McMurry TJ, Walovitch RC (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538 PubMedGoogle Scholar
  149. Le Duc G, Corde S, Charvet AM et al (2004) In vivo measurement of Gd concentration in a rat glioma model by monochromatic quantitative computed tomography: comparison between gadopentetate dimeglumine and gadobutrol. Invest Radiol 39:385–393PubMedCrossRefGoogle Scholar
  150. Li A, Wong CS, Wong MK, Lee CM, Au Yeung MC (2006) Acute adverse reactions to magnetic resonance contrast media—Gd chelates. Br J Radiol 79:368–371 PubMedCrossRefGoogle Scholar
  151. Maccioni F, Bruni A, Viscido A, Colaiacomo MC, Cocco A, Montesani C, Caprilli R, Marini M (2006) MR imaging in patients with Crohn disease: value of T 2- versus T 1-weighted Gd-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology 238:517–530PubMedCrossRefGoogle Scholar
  152. Manninger SP, Muldoon LL, Nesbit G, Murillo T, Jacobs PM, Neuwelt EA (2005) An exploratory study of ferumoxtran-10 nanoparticles as a blood–brain barrier imaging agent targeting phagocytic cells in CNS inflammatory lesions. AJNR Am J Neuroradiol 26:2290–2300PubMedGoogle Scholar
  153. Maza S, Taupitz M, Taymorian K, Winzer KJ, Rückert J, Paschen C, Räber G, Schneider S, Trefzer U, Munz DL (2006) Multimodal fusion imaging ensemble for targeted sentinel lymph node management: initial results of an innovative promising approach for anatomically difficult lymphatic drainage in different tumor entities. Eur J Nucl Med Mol Imaging 34:378–383PubMedCrossRefGoogle Scholar
  154. Meaney JF (1999) Non-invasive evaluation of the visceral arteries with magnetic resonance angiography. Eur Radiol 9:1267–1276PubMedCrossRefGoogle Scholar
  155. Meaney JF, Weg JG, Chenevert TL, Stafford-Johnson D, Hamilton BH, Prince MR (1997) Diagnosis of pulmonary embolism with magnetic resonance angiography. N Engl J Med 336:1422–1427PubMedCrossRefGoogle Scholar
  156. Michel SC, Keller TM, Frohlich JM, Fink D, Caduff R, Seifert B, Marincek B, Kubik-Huch RA (2002) Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225:527–536PubMedCrossRefGoogle Scholar
  157. Misselwitz B, Platzek J, Weinmann HJ (2004) Early MR lymphography with gadofluorine M in rabbits. Radiology 231:682–688PubMedCrossRefGoogle Scholar
  158. Morris EA. Breast cancer imaging with MRI (2002) Radiol Clin North Am 40:443–466Google Scholar
  159. Murphy KJ, Brunberg JA, Cohan RH (1996) Adverse reactions to Gd contrast media: a review of 36 cases. AJR Am J Roentgenol 167:847–849 PubMedGoogle Scholar
  160. Namkung S, Zech CJ, Helmberger T, Reiser MF, Schönberg SO (2007) Superparamagnetic iron oxide (SPIO)-enhanced liver MR Imaging with ferucarbotran: efficacy for characterization of focal liver lesions. J Magn Reson Imaging 25:755–765PubMedCrossRefGoogle Scholar
  161. Nassenstein K, Waltering KU, Eggebrecht H, Schlosser T, Hunold P, Barkhausen J (2006) [MR coronary angiography with MS-325, a blood pool contrast agent: comparison of an inversion recovery steady-state free precession with an inversion recovery fast low angle shot sequence in volunteers]. RoFo 178:508–514PubMedGoogle Scholar
  162. Nguyen BC, Stanford W, Thompson BH, Rossi NP, Kernstine KH, Kern JA, Robinson RA, Amorosa JK, Mammone JF, Outwater EK (1999) Multicenter clinical trial of ultrasmall superparamagnetic iron oxide in the evaluation of mediastinal lymph nodes in patients with primary lung carcinoma. J Magn Reson Imaging 10:468–473PubMedCrossRefGoogle Scholar
  163. Niendorf HP, Alhassan A, Geens VR, Clauss W (1994) Safety review of gadopentetate dimeglumine. Extended clinical experience after more than five million applications. Invest Radiol 29(Suppl 2):S179–S182 PubMedCrossRefGoogle Scholar
  164. Nishimura H, Tanigawa N, Hiramatsu M, Tatsumi Y, Matsuki M, Narabayashi I (2006) Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. J Am Coll Surg 202:604–611 PubMedCrossRefGoogle Scholar
  165. Oudkerk M, Sijens PE, van Beek EJ, Kuijpers TJ (1995) Safety and efficacy of Dotarem (Gd-DOTA) versus Magnevist (Gd-DTPA) in magnetic resonance imaging of the central nervous system. Invest Radiol 30:75–78PubMedCrossRefGoogle Scholar
  166. Ozsarlak O, Van Goethem JW, Maes M, Parizel PM (2004) MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46:955–972 PubMedCrossRefGoogle Scholar
  167. Paetsch I, Jahnke C, Barkhausen J, Spuentrup E, Cavagna F, Schnackenburg B, Huber M, Stuber M, Fleck E, Nagel E (2006) Detection of coronary stenoses with contrast enhanced, three-dimensional free breathing coronary MR angiography using the Gd-based intravascular contrast agent gadocoletic acid (B-22956). J Cardiovasc Magn Reson 8:509–516 PubMedCrossRefGoogle Scholar
  168. Parsons MW, Yang Q, Barber PA et al (2001) Perfusion magnetic resonance imaging maps in hyperacute stroke: relative cerebral blood flow most accurately identifies tissue destined to infarct. Stroke 32:1581–1587PubMedGoogle Scholar
  169. Pediconi F, Fraioli F, Catalano C, Napoli A, Danti M, Francone M, Venditti F, Nardis P, Passariello R (2003) Gadopentate dimeglumine (Gd-DTPA) vs. gadopentetate dimeglumine (Gd-BOPTA) for contrast-enhanced magnetic resonance angiography (MRA): improvement in intravascular signal intensity and contrast to noise ratio. Radiol Med (Torino) 106:87–93 Google Scholar
  170. Pediconi F, Catalano C, Occhiato R et al (2005) Breast lesion detection and characterization at contrast-enhanced MR mammography: gadopentate dimeglumine versus gadopentetate dimeglumine. Radiology 237:45–56 PubMedCrossRefGoogle Scholar
  171. Perreault P, Edelman MA, Baum RA, Yucel EK, Weisskoff RM, Shamsi K, Mohler ER III (2003) MR angiography with gadofosveset trisodium for peripheral vascular disease: phase II trial. Radiology 229:811–820PubMedCrossRefGoogle Scholar
  172. Petersein J, Reisinger W, Mutze S, Hamm B (2000a) Value of negative oral contrast media in MR cholangiopancreatography (MRCP). RoFo 172:55–60 PubMedGoogle Scholar
  173. Petersein J, Spinazzi A, Giovagnoni A et al (2000b) Focal liver lesions: evaluation of the efficacy of gadopentate dimeglumine in MR imaging—a multicenter phase III clinical study. Radiology 215:727–736PubMedGoogle Scholar
  174. Port M, Corot C, Rousseaux O, Raynal I, Devoldere L, Idee JM, Dencausse A, Le Greneur S, Simonot C, Meyer D (2001) P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. MAGMA 12:121–127 PubMedCrossRefGoogle Scholar
  175. Preda A, Novikov V, Moglich M et al (2004a) MRI monitoring of Avastin antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer. J Magn Reson Imaging 20:865–873PubMedCrossRefGoogle Scholar
  176. Preda A, Wielopolski PA, Ten Hagen TL et al (2004b) Dynamic contrast-enhanced MRI using macromolecular contrast media for monitoring the response to isolated limb perfusion in experimental soft-tissue sarcomas. MAGMA 17:296–302PubMedCrossRefGoogle Scholar
  177. Prince MR, Narasimham DL, Stanley JC et al (1995) Breath-hold Gd-enhanced MR angiography of the abdominal aorta and its major branches. Radiology 197:785–792PubMedGoogle Scholar
  178. Rapp JH, Wolff SD, Quinn SF, Soto JA, Meranze SG, Muluk S, Blebea J, Johnson SP, Rofsky NM, Duerinckx A, Foster GS, Kent KC, Moneta G, Middlebrook MR, Narra VR, Toombs BD, Pollak J, Yucel EK, Shamsi K, Weisskoff RM (2005) Aortoiliac occlusive disease in patients with known or suspected peripheral vascular disease: safety and efficacy of gadofosveset-enhanced MR angiography—multicenter comparative phase III study. Radiology 236:71–78PubMedCrossRefGoogle Scholar
  179. Reimer P, Balzer T (2003) Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur Radiol 13:1266–1276PubMedGoogle Scholar
  180. Reimer P, Bremer C, Allkemper T, Engelhardt M, Mahler M, Ebert W, Tombach B (2004) Myocardial perfusion and MR angiography of chest with SH U 555 C: results of placebo-controlled clinical phase I study. Radiology 231:474–481 PubMedCrossRefGoogle Scholar
  181. Riordan RD, Khonsari M, Jeffries J, Maskell GF, Cook PG (2004) Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography: a preliminary evaluation. Br J Radiol 77:991–999 PubMedCrossRefGoogle Scholar
  182. Rogers JM, Jung CW, Lewis J, Groman EV /91998) Use of USPIO-induced magnetic susceptibility artifacts to identify sentinel lymph nodes and lymphatic drainage patterns. I. Dependence of artifact size with subcutaneous Combidex dose in rats. Magn Reson Imaging 16:917–23Google Scholar
  183. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724 PubMedCrossRefGoogle Scholar
  184. Ruehm SG, Christina H, Violas X, Corot C, Debatin JF (2002) MR angiography with a new rapid-clearance blood pool agent: Initial experience in rabbits. Magn Reson Med 48:844–851 PubMedCrossRefGoogle Scholar
  185. Runge VM (2000) Safety of approved MR contrast media for intravenous injection. J Magn Reson Imaging 12:205–213 PubMedCrossRefGoogle Scholar
  186. Sadowski EA, Bennett LK, Chan MR, Wentland AL, Garrett AL, Garrett RW, Djamali A (2007) Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology 243:148–157PubMedGoogle Scholar
  187. Schnorr J, Wagner S, Abramjuk C, Wojner I, Schink T, Kroencke TJ, Schellenberger E, Hamm B, Pilgrimm H, Taupitz M (2004) Comparison of the iron oxide-based blood-pool contrast medium VSOP-C184 with gadopentetate dimeglumine for first-pass magnetic resonance angiography of the aorta and renal arteries in pigs. Invest Radiol 39:546–553 PubMedCrossRefGoogle Scholar
  188. Schwitter J, Saeed M, Wendland MF et al (1997) Influence of severity of myocardial injury on distribution of macromolecules: extravascular versus intravascular Gd-based magnetic resonance contrast agents. J Am Coll Cardiol 30:1086–1094PubMedCrossRefGoogle Scholar
  189. Sharafuddin MJ, Stolpen AH, Sun S, Leusner CR, Safvi AA, Hoballah JJ, Sharp WJ, Corson JD (2002) High-resolution multiphase contrast-enhanced three-dimensional MR angiography compared with two-dimensional time-of-flight MR angiography for the identification of pedal vessels. J Vasc Interv Radiol 13:695–702 PubMedCrossRefGoogle Scholar
  190. Shellock FG (1999) Safety of MRI contrast agents. JMRI 10:477–484PubMedCrossRefGoogle Scholar
  191. Spinazzi A, Lorusso V, Pirovano G, Kirchin M (1999) Safety, tolerance, biodistribution, and MR imaging enhancement of the liver with gadopentate dimeglumine: results of clinical pharmacologic and pilot imaging studies in nonpatient and patient volunteers. Acad Radiol 6:282–291PubMedCrossRefGoogle Scholar
  192. Staatz G, Nolte-Ernsting CC, Adam GB, Grosskortenhaus S, Misselwitz B, Bucker A, Gunther RW (2001) Interstitial T1-weighted MR lymphography: lipophilic perfluorinated Gd chelates in pigs. Radiology 220:129–134 PubMedGoogle Scholar
  193. Stets C, Brandt S, Wallis F, Buchmann J, Gilbert FJ, Heywang-Kobrunner SH (2002) Axillary lymph node metastases: a statistical analysis of various parameters in MRI with USPIO. J Magn Reson Imaging 16:60–68PubMedCrossRefGoogle Scholar
  194. Tatsumi Y, Tanigawa N, Nishimura H, Nomura E, Mabuchi H, Matsuki M, Narabayashi I (2006) Preoperative diagnosis of lymph node metastases in gastric cancer by magnetic resonance imaging with ferumoxtran-10. Gastric Cancer 9:120–128PubMedCrossRefGoogle Scholar
  195. Taylor AM, Panting JR, Keegan J, Gatehouse PD, Amin D, Jhooti P, Yang GZ, McGill S, Burman ED, Francis JM, Firmin DN, Pennell DJ (1999) Safety and preliminary findings with the intravascular contrast agent NC100150 injection for MR coronary angiography. J Magn Reson Imaging 9:220–227PubMedCrossRefGoogle Scholar
  196. Thilmann O, Larsson EM, Bjorkman-Burtscher IM, Stahlberg F, Wirestam R (2005) Comparison of contrast agents with high molarity and with weak protein binding in cerebral perfusion imaging at 3 T. J Magn Reson Imaging 22:597–604PubMedCrossRefGoogle Scholar
  197. Thomsen HS, Morcos SK, Dawson P (2006) Is there a causal relation between the administration of Gd based contrast media and the development of nephrogenic systemic fibrosis (NSF)? Clin Radiol 61:905–906 PubMedCrossRefGoogle Scholar
  198. Tombach B, Benner T, Reimer P et al (2003) Do highly concentrated Gd chelates improve MR brain perfusion imaging? Intraindividually controlled randomized crossover concentration comparison study of 0.5 versus 1.0 mol/l gadobutrol. Radiology 226:880–888PubMedCrossRefGoogle Scholar
  199. Turetschek K, Floyd E, Helbich T et al (2001) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242PubMedCrossRefGoogle Scholar
  200. US Food and Drug Administration (2006) Public health advisory: Gd-containing contrast agents for magnetic resonance imaging (MRI): Omniscan, OptiMARK, Magnevist, ProHance, and MultiHance. Cited 21 March 2007Google Scholar
  201. Valk J, Algra PR, Hazenberg CJ, Slooff WB, Slavand MG (1993) A double-blind, comparative study of gadodiamide injection and gadopentetate dimeglumine in MRI of the central nervous system. Neuroradiology 35:173–177PubMedCrossRefGoogle Scholar
  202. Verstraete KL, Lang P (2000) Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 34:229–246PubMedCrossRefGoogle Scholar
  203. Vogl TJ, Friebe CE, Balzer T et al (1995) Diagnosis of cerebral metastasis with standard dose gadobutrol vs. a high dose protocol. Intraindividual evaluation of a phase II high dose study. Radiologe 35:508–516PubMedGoogle Scholar
  204. Vogl TJ, Schwarz W, Blume S et al (2003) Preoperative evaluation of malignant liver tumors: comparison of unenhanced and SPIO (Resovist)-enhanced MR imaging with biphasic CTAP and intraoperative US. Eur Radiol 13:262–272PubMedGoogle Scholar
  205. Vosshenrich R, Engeroff B, Obenauer S, Grabbe E (2003) Kontrastmittel-gestützte 3D-Angiographie des arteriellen und portalvenösen Gefäßsystems der Leber mit unterschiedlicher KM-Konzentration. RoFo 175:1239–1243PubMedGoogle Scholar
  206. Wagenseil JE, Johansson LO, Lorenz CH (1999) Characterization of t1 relaxation and blood-myocardial contrast enhancement of NC100150 injection in cardiac MRI. J Magn Reson Imaging 10:784–789 PubMedCrossRefGoogle Scholar
  207. Wagner S, Schnorr J, Pilgrimm H, Hamm B, Taupitz M (2002) Monomer-coated very small superparamagnetic iron oxide particles as contrast medium for magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol 37:167–177 PubMedCrossRefGoogle Scholar
  208. Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–31 PubMedCrossRefGoogle Scholar
  209. Ward J, Guthrie JA, Scott DJ et al (2000) Hepatocellular carcinoma in the cirrhotic liver: double-contrast MR imaging for diagnosis. Radiology 216:154–162PubMedGoogle Scholar
  210. Weishaupt D, Ruhm SG, Binkert CA, Schmidt M, Patak MA, Steybe F, McGill S, Debatin JF (2000) Equilibrium-phase MR angiography of the aortoiliac and renal arteries using a blood pool contrast agent. AJR Am J Roentgenol 175:189–195PubMedGoogle Scholar
  211. Wendland MF, Saeed M, Lauerman K et al (1999) Alterations in T1 of normal and reperfused infarcted myocardium after Gd-BOPTA versus Gd-DTPA on inversion recovery EPI. Magn Reson Med 37:448–456CrossRefGoogle Scholar
  212. Wielopolski PA, van Geuns RJ, de Feyter PJ, Oudkerk M (1998) Breath-hold coronary MR angiography with volume-targeted imaging. Radiology 209:209–219PubMedGoogle Scholar
  213. Wilke N, Kroll K, Merkle H et al (1995) Regional myocardial blood volume and flow: first-pass MR imaging with polylysine-Gd-DTPA. J Magn Reson Imaging 5:227–237PubMedCrossRefGoogle Scholar
  214. Wilke N, Jerosch-Herold M, Wang Y et al (1997) Myocardial perfusion reserve: assessment with multisection, quantitative, first-pass MR imaging. Radiology 204:373–384PubMedGoogle Scholar
  215. Yuh WT, Fisher DJ, Engelken JD et al (1991) MR evaluation of CNS tumors: dose comparison study with gadopentetate dimeglumine and gadoteridol. Radiology 180:485–491PubMedGoogle Scholar
  216. Yuh WT, Nguyen HD, Tali ET et al (1994) Delineation of gliomas with various doses of MR contrast material. AJNR Am J Neuroradiol 15:983–989PubMedGoogle Scholar
  217. Zech CJ, Herrmann KA, Huber A et al (2004) High-resolution MR-imaging of the liver with T2-weighted sequences using integrated parallel imaging: comparison of prospective motion correction and respiratory triggering. J Magn Reson Imaging 20:443–450PubMedCrossRefGoogle Scholar
  218. Zech CJ, Namkung S, Helmberger T, Reiser MF, Schönberg SO (2005) Efficacy of ferucarbotran-enhanced early dynamic MR Imaging with T1-weighted sequences for characterization of focal liver lesions. Eur Radiol 15(Suppl 3):37Google Scholar
  219. Zerhouni EA, Rutter C, Hamilton SR et al (1996) CT and MR imaging in the staging of colorectal carcinoma: report of the Radiology Diagnostic Oncology Group II. Radiology 200:443–451PubMedGoogle Scholar
  220. Ahlstrom KH, Johansson LO, Rodenburg JB, Ragnarsson AS, Akeson P, Borseth A (1999) Pulmonary MR angio­graphy with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology 211:865–869PubMedGoogle Scholar
  221. Albert MS, Huang W, Lee JH, Patlak CS, Springer CS Jr (1993) Susceptibility changes following bolus injections. Magn Reson Med 29:700–708PubMedCrossRefGoogle Scholar
  222. Al-Kwifi O, Kim JK, Stainsby J, Huang Y, Sussman MS, Farb RI, Wright GA (2004) Pulsatile motion effects on 3D magnetic resonance angiography: implications for evaluating caro­tid artery stenoses. Magn Reson Med 52:605–611PubMedCrossRefGoogle Scholar
  223. Anderson CM, Lee RE (1993) Time-of-flight techniques. Pulse sequences and clinical protocols. Magn Reson Imaging Clin N Am 1:217–227PubMedGoogle Scholar
  224. Bampton AEH, Riederer SJ, Korin HW (1992) Centric phase-encoding order in three-di­men­sional MP-RAGE sequences: application to abdominal imaging. J Magn Reson Imaging 2:327–334PubMedCrossRefGoogle Scholar
  225. Bemmel CM van, Spreeuwers LJ, Viergever MA, Niessen WJ (2003a) Level-set-based artery-vein separation in blood pool agent CE-MR angiograms. IEEE Trans Med Imaging 22:1224–1234PubMedCrossRefGoogle Scholar
  226. Bemmel CM van, Wink O, Verdonck B, Viergever MA, Niessen WJ (2003b) Blood pool con­trast-enhanced MRA: improved arterial visualization in the steady state. IEEE Trans Med Imaging 22:645–652PubMedCrossRefGoogle Scholar
  227. Bieri O, Scheffler K (2005) Flow compensation in balanced SSFP sequences. Magn Reson Med 54:901–907PubMedCrossRefGoogle Scholar
  228. Bock M, Schönberg SO, Flomer F, Schad LR (2000) Separation of arteries and veins in 3D MR angiography using correlation analysis. Magn Reson Med 43:481–487PubMedCrossRefGoogle Scholar
  229. Bryant DJ, Payne JA, Firmin DN, Longmore DB (1984) Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 8:588–593PubMedCrossRefGoogle Scholar
  230. Detre JA, Zhang W, Roberts DA, Silva AC, Williams DS, Grandis DJ, Koretsky AP, Leigh JS (1994) Tissue spe­cific perfusion imaging using arterial spin labeling. NMR Biomed 7:75–82PubMedCrossRefGoogle Scholar
  231. Dumoulin CL (1995) Phase contrast MR angiography techniques. Magn Reson Imaging Clin N Am 3:399–411PubMedGoogle Scholar
  232. Earls JP, Rofsky NM, DeCorato DR, Krinsky GA, Weinreb JC (1997) Hepatic arterial-phase dynamic gadolinium-enhanced MR imaging: optimization with a test examination and a power injector. Radiology 202:268–273PubMedGoogle Scholar
  233. Edelman RR, Chien D, Kim D (1991) Fast selective black blood MR imaging. Radiology 181:655–660PubMedGoogle Scholar
  234. Edelman RR, Ahn SS, Chien D, Li W, Goldmann A, Mantello M, Kramer J, Kleefield J (1992) Improved time-of-flight MR angiography of the brain with magnetization transfer contrast. Radiology 184:395–399PubMedGoogle Scholar
  235. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielopolski P (1994) Signal targeting with alternating radio­frequency (STAR) sequences: application to MR angiography. Magn Reson Med 31:233–238PubMedCrossRefGoogle Scholar
  236. Essig M, Engenhart R, Knopp MV, Bock M, Scharf J, Debus J, Wenz F, Hawighorst H, Schad LR, van Kaick G (1996) Cerebral arteriovenous malformations: improved nidus demarcation by means of dynamic tagging MR-angio­graphy. Magn Reson Imaging 14:227–233PubMedCrossRefGoogle Scholar
  237. Fain SB, Riederer SJ, Bernstein MA, Huston J III (1999) Theoretical limits of spatial resolution in elliptical-centric contrast-enhanced 3D-MRA. Magn Reson Med 42:1106–1116PubMedCrossRefGoogle Scholar
  238. Fink C, Ley S, Kroeker R, Requardt M, Kauczor HU, Bock M (2005) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Invest Radiol 40:40–48PubMedCrossRefGoogle Scholar
  239. Golay X, Hendrikse J, Lim TC (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27PubMedCrossRefGoogle Scholar
  240. Gomori JM, Grossman RI, Yu-Ip C, Asakura T (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11:684–690PubMedCrossRefGoogle Scholar
  241. Goyen M (2006) (ed) MR angiography with Vasovist®. ABW Wissenschaftsverlag, BerlinGoogle Scholar
  242. Grist TM, Korosec FR, Peters DC, Witte S, Walovitch RC, Dolan RP, Bridson WE, Yucel EK, Mistretta CA (1998) Steady-state and dynamic MR angiography with MS-325: initial ex­pe­rience in humans. Radiology 207:539–544PubMedGoogle Scholar
  243. Haacke EM, Patrick JL (1986) Reducing motion artifacts in two-dimensional fourier trans­form imaging. Magn Reson Imaging 4:359–376PubMedCrossRefGoogle Scholar
  244. Korosec FR, Frayne R, Grist TM, Mistretta CA (1996) Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 36:345–351PubMedCrossRefGoogle Scholar
  245. Lin W, Haacke EM, Edelman RR (1993) Black blood angiography. In: Potchen EJ, Haacke EM, Siebert JE, Gottschalk A (eds) Magnetic resonance angiography, concepts and applications. Mosby, St. Louis pp 160–172Google Scholar
  246. Maki JH, Prince MR, Londy FJ, Chenevert TL (1996) The effects of time varying intravascular signal intensity and k-space acquisition order on three-dimensional MR angiography image quality. J Magn Reson Imaging 6:642–651PubMedCrossRefGoogle Scholar
  247. Maki JH, Prince MR, Chenevert TL (1997) The effects of incomplete breath-holding on 3D MR image quality. J Magn Reson Imaging 7:1132–1139PubMedCrossRefGoogle Scholar
  248. Martin AJ, Weber OM, Saeed M, Roberts TP (2003) Steady-state imaging for visualization of endovascular interventions. Magn Reson Med 50:434–438 PubMedCrossRefGoogle Scholar
  249. Miyazaki M, Sugiura S, Tateishi F, Wada H, Kassai Y, Abe H (2000) Non-contrast-enhanced MR angiography using 3D ECG-synchronized half-Fourier fast spin-echo. J Magn Reson Imaging 12:776–783PubMedCrossRefGoogle Scholar
  250. Nagele T, Klose U, Grodd W, Nusslin F, Voigt K (1995) Nonlinear excitation profiles for three-dimensional inflow MR angiography. J Magn Reson Imaging 5:416–420PubMedCrossRefGoogle Scholar
  251. Oppelt A, Grauman R, Barfuss H, Fischer H, Hartl W, Schajor W (1986) FISP—a new fast MRI sequence. Electro­medica 54:15–19Google Scholar
  252. Parker DL, Yuan C, Blatter DD (1991) MR angiography by multiple thin slab 3D acquisition. Magn Reson Med 17:434–451PubMedCrossRefGoogle Scholar
  253. Potchen EJ, Haacke EM, Siebert JE (1993) Magnetic resonance angiography. Mosby, St. LouisGoogle Scholar
  254. Prasad PV, Cannillo J, Chavez DR, Pinchasin ES, Dolan RP, Walovitch R, Edelman RR (1999) First-pass renal perfusion imaging using MS-325, an albumin-targeted MRI contrast agent. Invest Radiol 34:566–571PubMedCrossRefGoogle Scholar
  255. Prince MR (1994) Gadolinium-enhanced MR aortography. Radiology 191:155–164PubMedGoogle Scholar
  256. Prince MR (1996) Body MR angiography with gadolinium contrast agents. Magn Reson Imaging Clin N Am 4:11–24PubMedGoogle Scholar
  257. Prince MR, Chenevert TL, Foo TK, Londy FJ, Ward JS, Maki JH (1997) Contrast-enhanced abdominal MR angiography: optimization of imaging delay time by automating the de­tection of contrast material arrival in the aorta. Radiology 203:109–114PubMedGoogle Scholar
  258. Prince MR, Grist TM, Debatin JF (2003) 3D contrast MR angiography. Springer, Berlin Heidelberg New YorkGoogle Scholar
  259. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRefGoogle Scholar
  260. Riederer SJ, Tasciyan T, Farzaneh F (1988) MR flouroscopy: technical feasibility. Magn Reson Med 8:1–15PubMedCrossRefGoogle Scholar
  261. Saloner D, van Tyen R, Dillon WP, Jou LD, Berger SA (1996) Central intraluminal saturation stripe on MR an­gio­grams of curved vessels: simulation, phantom, and clinical analysis. Radiology 198:733–739PubMedGoogle Scholar
  262. Sodickson DK, Manning W (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedCrossRefGoogle Scholar
  263. Storey P, Li W, Chen Q, Edelman RR (2004) Flow artifacts in steady-state free precession cine imaging. Magn Reson Med 51:115–122PubMedCrossRefGoogle Scholar
  264. Svensson J, Petersson JS, Stahlberg F, Larsson EM, Leander P, Olsson LE (1999) Image artifacts due to a time-varying contrast medium concentration in 3D contrast-enhanced MRA. J Magn Reson Imaging 10:919–928PubMedCrossRefGoogle Scholar
  265. Svensson J, Leander P, Maki JH, Stahlberg F, Olsson LE (2002) Separation of arteries and veins using flow-induced phase effects in contrast-enhanced MRA of the lower extremities. Magn Reson Imaging 20:49–57PubMedCrossRefGoogle Scholar
  266. Vogt FM, Ajaj W, Hunold P, Herborn CU, Quick HH, Debatin JF, Ruehm SG (2004) Venous compression at high-spatial-resolution three-dimensional MR angiography of peripheral arteries. Radiology 233:913–920PubMedCrossRefGoogle Scholar
  267. Wacker FK, Wendt M, Ebert W, Hillenbrandt C, Wolf KJ, Lewin JS (2002) Use of a blood-pool contrast agent for MR-guided vascular procedures: feasibility of ultrasmall super­para­magnetic iron oxide particles. Acad Radiol 9:1251–1254 PubMedCrossRefGoogle Scholar
  268. Wentz K, Fröhlich J, von Weymarn C, Patak M, Jenelten R, Zollikofer C (2003) High-resolution magnetic re­so­nance angiography of hands with timed arterial compression (tac-MRA). Lancet 361:49–50PubMedCrossRefGoogle Scholar
  269. Wilman AH, Riederer SJ (1996) Improved centric phase encoding orders for three-dimensional magnetization-prepared MR angiography. Magn Reson Med 36:384–392PubMedCrossRefGoogle Scholar
  270. Wilman AH, Riederer SJ, Breen JF et al (1996) Elliptical spiral phase encoding order: an optimal, field-of-view-dependent ordering scheme for breath-hold contrast-enhanced 3D MR angiography. Radiology 201:328–329Google Scholar
  271. Wilman AH, Riederer SJ, King BF, Debbins JP, Rossman PJ, Ehman RL (1997) Fluoroscopi­cal­ly triggered contrast-enhanced three-dimensional MR angiography with elliptical centric view order: application to the renal arteries. Radiology 205:137–146PubMedGoogle Scholar
  272. Wilman AH, Yep TC, Al-Kwifi O (2001) Quantitative evaluation of nonrepetitive phase-enco­ding orders for first-pass, 3D contrast-enhanced MR angiography. Magn Reson Med 46:541–547PubMedCrossRefGoogle Scholar
  273. Wilson GJ, Hoogeveen RM, Willinek WA, Muthupillai R, Maki JH (2004) Parallel imaging in MR angiography. Top Magn Reson Imaging 15:169–185PubMedCrossRefGoogle Scholar
  274. Wood ML, Henkelman RM (1985) MR image artifacts from periodic motion. Med Phys 12:143–151PubMedCrossRefGoogle Scholar
  275. Zhang HL, Ho BY, Chao M, Kent KC, Bush HL, Faries PL, Benvenisty AI, Prince MR (2004) Decreased venous contamination on 3D gadolinium-enhanced bolus chase peripheral MR angiography using thigh com­pres­sion. Am J Roentgenol 183:1041–1047Google Scholar
  276. Alexander AL, Tsuruda JS, Parker DL (1997) Elimination of eddy current artifacts in diffusion-weighted echo planar images: the use of bipolar gradients. Magn Reson Med 38:1016–1021PubMedCrossRefGoogle Scholar
  277. Alsop DC (1997) Phase insensitive preparation of single-shot RARE: application to diffusion imaging in humans. Magn Reson Med 38:527–533PubMedCrossRefGoogle Scholar
  278. Anderson AW, Gore JC (1994) Analysis and correction of motion artifacts in diffusion weighted imaging. Magn Reson Med 32:379–387PubMedCrossRefGoogle Scholar
  279. Armitage PA, Bastin ME (2001) Utilizing the diffusion-to-noise ratio to optimize magnetic resonance diffusion tensor acquisition strategies for improving measurements of diffusion anisotropy. Magn Reson Med 45:1056–1065PubMedCrossRefGoogle Scholar
  280. Assaf Y, Ben-Bashat D, Chapman J, Peled S, Biton IE, Kafri M, Segev Y, Hendler T, Korczyn AD, Graif M, Cohen Y (2002) High b-value q-space analyzed diffusion-weighted MRI: application to multiple sclerosis. Magn Reson Med 47:115–126PubMedCrossRefGoogle Scholar
  281. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267PubMedCrossRefGoogle Scholar
  282. Basser PJ, Pierpaoli C (1996) Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111:209–219PubMedCrossRefGoogle Scholar
  283. Basser PJ, Pierpaoli C (1998) A simplified method to measure the diffusion tensor from seven MR images. Magn Reson Med 39:928–934PubMedCrossRefGoogle Scholar
  284. Baur A, Stabler A, Bruning R, Bartl R, Krodel A, Reiser M, Deimling M (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356PubMedGoogle Scholar
  285. Baur A, Dietrich O, Reiser M (2003) Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 13:1699–1708PubMedCrossRefGoogle Scholar
  286. Beaulieu C (2002) The basis of anisotropic water diffusion in the nervous system - a technical review. NMR Biomed 15:435–455PubMedCrossRefGoogle Scholar
  287. Bodammer N, Kaufmann J, Kanowski M, Tempelmann C (2004) Eddy current correction in diffusion-weighted imaging using pairs of images acquired with opposite diffusion gradient polarity. Magn Reson Med 51:188–193PubMedCrossRefGoogle Scholar
  288. Boulanger Y, Amara M, Lepanto L, Beaudoin G, Nguyen BN, Allaire G, Poliquin M, Nicolet V (2003) Diffusion-weighted MR imaging of the liver of hepatitis C patients. NMR Biomed 16:132–136PubMedCrossRefGoogle Scholar
  289. Brown R (1866) A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. In: Bennett JJ (ed) The miscellaneous botanical works of Robert Brown, vol. 1. Hardwicke, LondonGoogle Scholar
  290. Burdette JH, Elster AD, Ricci PE (1999) Acute cerebral infarction: quantification of spin-density and T2 shine-through phenomena on diffusion-weighted MR images. Radiology 212:333–339PubMedGoogle Scholar
  291. Butts K, de Crespigny A, Pauly JM, Moseley M (1996) Diffusion-weighted interleaved echo planar imaging with a pair of orthogonal navigator echoes. Magn Reson Med 35:763–770PubMedCrossRefGoogle Scholar
  292. Buxton RB (1993) The diffusion sensitivity of fast steady-state free precession imaging. Magn Reson Med 29:235–243PubMedCrossRefGoogle Scholar
  293. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638CrossRefGoogle Scholar
  294. Cercignani M, Horsfield MA (1999) An optimized pulse sequence for isotropically weighted diffusion imaging. J Magn Reson 140:58–68PubMedCrossRefGoogle Scholar
  295. Cercignani M, Iannucci G, Rocca MA, Comi G, Horsfield MA, Filippi M (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54:1139–1144PubMedGoogle Scholar
  296. Chien D, Buxton RB, Kwong KK, Brady TJ, Rosen BR (1990) MR diffusion imaging of the human brain. J Comput Assist Tomogr 14:514–520PubMedCrossRefGoogle Scholar
  297. Chien D, Kwong KK, Gress DR, Buonanno FS, Buxton RB, Rosen BR (1992) MR diffusion imaging of cerebral infarction in humans. AJNR Am J Neuroradiol 13:1097–1102PubMedGoogle Scholar
  298. Chun T, Ulug AM, van Zijl PC (1998) Single-shot diffusion-weighted trace imaging on a clinical scanner. Magn Reson Med 40:622–628PubMedCrossRefGoogle Scholar
  299. Clark CA, Werring DJ (2002a) Diffusion tensor imaging in spinal cord: methods and applications – a review. NMR Biomed 15:578-586PubMedCrossRefGoogle Scholar
  300. Clark CA, Hedehus M, Moseley ME (2002b) In vivo mapping of the fast and slow diffusion tensors in human brain. Magn Reson Med 47:623–628PubMedCrossRefGoogle Scholar
  301. Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, McKinstry RC, Burton H, Raichle ME (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427PubMedCrossRefGoogle Scholar
  302. Cova M, Squillaci E, Stacul F, Manenti G, Gava S, Simonetti G, Pozzi-Mucelli R (2004) Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 77:851–857PubMedCrossRefGoogle Scholar
  303. Dietrich O, Heiland S, Benner T, Sartor K (2000) Reducing motion artefacts in diffusion-weighted MRI of the brain: efficacy of navigator echo correction and pulse triggering. Neuroradiology 42:85–91PubMedCrossRefGoogle Scholar
  304. Dietrich O, Heiland S, Sartor K (2001a) Noise correction for the exact determination of apparent diffusion coefficients at low SNR. Magn Reson Med 45:448–453PubMedCrossRefGoogle Scholar
  305. Dietrich O, Herlihy A, Dannels WR, Fiebach J, Heiland S, Hajnal JV, Sartor K (2001b) Diffusion-weighted imaging of the spine using radial k-space trajectories. MAGMA 12:23–31PubMedCrossRefGoogle Scholar
  306. Dietrich O, Raya JG, Sommer J, Deimling M, Reiser MF, Baur-Melnyk A (2005) A comparative evaluation of a RARE-based single-shot pulse sequence for diffusion-weighted MRI of musculoskeletal soft-tissue tumors. Eur Radiol 15:772–783PubMedCrossRefGoogle Scholar
  307. Einarsdottir H, Karlsson M, Wejde J, Bauer HC (2004) Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 14:959–963PubMedCrossRefGoogle Scholar
  308. Filippi M, Inglese M (2001) Overview of diffusion-weighted magnetic resonance studies in multiple sclerosis. J Neurol Sci 186:S37–S43PubMedCrossRefGoogle Scholar
  309. Frank LR (2001) Anisotropy in high angular resolution diffusion-weighted MRI. Magn Reson Med 45:935–939PubMedCrossRefGoogle Scholar
  310. Gmitro AF, Alexander AL (1993) Use of a projection reconstruction method to decrease motion sensitivity in diffusion-weighted MRI. Magn Reson Med 29:835–838PubMedCrossRefGoogle Scholar
  311. Gudbjartsson H, Maier SE, Mulkern RV, Morocz IA, Patz S, Jolesz FA (1996) Line scan diffusion imaging. Magn Reson Med 36:509–519PubMedCrossRefGoogle Scholar
  312. Hahn EL (1950) Spin-echoes. Phys Rev 80:580–594CrossRefGoogle Scholar
  313. Hasan KM, Parker DL, Alexander AL (2001) Comparison of gradient encoding schemes for diffusion-tensor MRI. J Magn Reson Imaging 13:769–780PubMedCrossRefGoogle Scholar
  314. Helenius J, Soinne L, Perkio J, Salonen O, Kangasmaki A, Kaste M, Carano RA, Aronen HJ, Tatlisumak T (2002) Diffusion-weighted MR imaging in normal human brains in various age groups. AJNR Am J Neuroradiol 23:194–199PubMedGoogle Scholar
  315. Herneth AM, Philipp MO, Naude J, Funovics M, Beichel RR, Bammer R, Imhof H (2002) Vertebral metastases: assessment with apparent diffusion coefficient. Radiology 225:889–894PubMedCrossRefGoogle Scholar
  316. Holder CA, Muthupillai R, Mukundan S Jr, Eastwood JD, Hudgins PA (2000) Diffusion-weighted MR imaging of the normal human spinal cord in vivo. AJNR Am J Neuroradiol 21:1799–1806PubMedGoogle Scholar
  317. Horsfield MA (1999) Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. Magn Reson Imaging 17:1335–1345PubMedCrossRefGoogle Scholar
  318. Inglis BA, Bossart EL, Buckley DL, Wirth ED III, Mareci TH (2001) Visualization of neural tissue water compartments using biexponential diffusion tensor MRI. Magn Reson Med 45:58–587CrossRefGoogle Scholar
  319. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440PubMedCrossRefGoogle Scholar
  320. Jones DK (2003) Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI. Magn Reson Med 49:7–12PubMedCrossRefGoogle Scholar
  321. Jones DK (2004a) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study. Magn Reson Med 51:807–815PubMedCrossRefGoogle Scholar
  322. Jones DK, Basser PJ (2004b) “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data. Magn Reson Med 52:979–993PubMedCrossRefGoogle Scholar
  323. Jones DK, Pierpaoli C (2005) Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach. Magn Reson Med 53:1143–1149PubMedCrossRefGoogle Scholar
  324. Jones DK, Horsfield MA, Simmons A (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson Med 42:515-525PubMedCrossRefGoogle Scholar
  325. Jones DK, Griffin LD, Alexander DC, Catani M, Horsfield MA, Howard R, Williams SC (2002a) Spatial normalization and averaging of diffusion tensor MRI data sets. Neuroimage 17:592–617PubMedCrossRefGoogle Scholar
  326. Jones DK, Williams SC, Gasston D, Horsfield MA, Simmons A, Howard R (2002b) Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum Brain Mapp 15:216–230PubMedCrossRefGoogle Scholar
  327. Kingsley PB, Monahan WG (2004) Selection of the optimum b factor for diffusion-weighted magnetic resonance imaging assessment of ischemic stroke. Magn Reson Med 51:996–1001PubMedCrossRefGoogle Scholar
  328. Kingsley PB, Monahan WG (2005) Contrast-to-noise ratios of diffusion anisotropy indices. Magn Reson Med 53:911–918PubMedCrossRefGoogle Scholar
  329. Kinoshita T, Yashiro N, Ihara N, Funatu H, Fukuma E, Narita M (2002) Diffusion-weighted half-Fourier single-shot turbo spin-echo imaging in breast tumors: differentiation of invasive ductal carcinoma from fibroadenoma. J Comput Assist Tomogr 26:1042–1046PubMedCrossRefGoogle Scholar
  330. Le Bihan D (1988) Intravoxel incoherent motion imaging using steady-state free precession. Magn Reson Med 7:346–351PubMedCrossRefGoogle Scholar
  331. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407PubMedGoogle Scholar
  332. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedGoogle Scholar
  333. Lee H, Price RR (1994) Diffusion imaging with the MP-RAGE sequence. J Magn Reson Imaging 4:837–842PubMedCrossRefGoogle Scholar
  334. Lovblad KO, Jakob PM, Chen Q, Baird AE, Schlaug G, Warach S, Edelman RR (1998) Turbo spin-echo diffusion-weighted MR of ischemic stroke. AJNR Am J Neuroradiol 19:201–208PubMedGoogle Scholar
  335. Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PC (2002) Diffusion tensor MR imaging of the brain and white matter tractography. Am J Roentgenol 178:3–16Google Scholar
  336. Merboldt KD, Hanicke W, Frahm J (1985) Self-diffusion NMR imaging using stimulated echoes. J Magn Reson 64:479–486Google Scholar
  337. Merboldt KD, Bruhn H, Frahm J, Gyngell ML, Hanicke W, Deimling M (1989) MRI of “diffusion” in the human brain: new results using a modified CE-FAST sequence. Magn Reson Med 9:423–429PubMedCrossRefGoogle Scholar
  338. Miller KL, Pauly JM (2003) Nonlinear phase correction for navigated diffusion imaging. Magn Reson Med 50:343–353PubMedCrossRefGoogle Scholar
  339. Miller KL, Hargreaves BA, Gold GE, Pauly JM (2004) Steady-state diffusion-weighted imaging of in vivo knee cartilage. Magn Reson Med 51:394–398PubMedCrossRefGoogle Scholar
  340. Mills R (1973) Self-diffusion in normal and heavy water in the range 1–45°. J Phys Chem 77:685–688CrossRefGoogle Scholar
  341. Mori S, van Zijl PC (1995) Diffusion weighting by the trace of the diffusion tensor within a single scan. Magn Reson Med 33:41–52PubMedCrossRefGoogle Scholar
  342. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies - a technical review. NMR Biomed 15:468–480PubMedCrossRefGoogle Scholar
  343. Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269PubMedCrossRefGoogle Scholar
  344. Moseley M (2002) Diffusion tensor imaging and aging – a review. NMR Biomed 15:553–560PubMedCrossRefGoogle Scholar
  345. Moseley ME, Cohen Y, Mintorovitch J, Chileuitt L, Shimizu H, Kucharczyk J, Wendland MF, Weinstein PR (1990a) Early detection of regional cerebral ischemia in cats: comparison of diffusion- and T2-weighted MRI and spectroscopy. Magn Reson Med 14:330–346PubMedCrossRefGoogle Scholar
  346. Moseley ME, Kucharczyk J, Mintorovitch J, Cohen Y, Kurhanewicz J, Derugin N, Asgari H, Norman D (1990b) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11:423–429PubMedGoogle Scholar
  347. Moseley M, Bammer R, Illes J (2002) Diffusion-tensor imaging of cognitive performance. Brain Cogn 50:396–413PubMedCrossRefGoogle Scholar
  348. Moteki T, Horikoshi H, Oya N, Aoki J, Endo K (2002) Evaluation of hepatic lesions and hepatic parenchyma using diffusion-weighted reordered turboFLASH magnetic resonance images. J Magn Reson Imaging 15:564–572PubMedCrossRefGoogle Scholar
  349. Neil J, Miller J, Mukherjee P, Huppi PS (2002) Diffusion tensor imaging of normal and injured developing human brain – a technical review. NMR Biomed 15:543–552PubMedCrossRefGoogle Scholar
  350. Norris DG (2001) Implications of bulk motion for diffusion-weighted imaging experiments: effects, mechanisms, and solutions. J Magn Reson Imaging 13:486–495PubMedCrossRefGoogle Scholar
  351. Norris DG, Bornert P, Reese T, Leibfritz D (1992) On the application of ultra-fast RARE experiments. Magn Reson Med 27:142–164PubMedCrossRefGoogle Scholar
  352. Okamoto K, Ito J, Ishikawa K, Sakai K, Tokiguchi S (2000) Diffusion-weighted echo planar MR imaging in differential diagnosis of brain tumors and tumor-like conditions. Eur Radiol 10:1342–1350PubMedCrossRefGoogle Scholar
  353. Ordidge RJ, Helpern JA, Qing ZX, Knight RA, Nagesh V (1994) Correction of motional artifacts in diffusion-weighted MR images using navigator echoes. Magn Reson Imaging 12:455–460PubMedCrossRefGoogle Scholar
  354. Papadakis NG, Murrills CD, Hall LD, Huang CL, Adrian Carpenter T (2000) Minimal gradient encoding for robust estimation of diffusion anisotropy. Magn Reson Imaging 18:671–679PubMedCrossRefGoogle Scholar
  355. Papadakis NG, Smponias T, Berwick J, Mayhew JE (2005) k-space correction of eddy current-induced distortions in diffusion-weighted echo planar imaging. Magn Reson Med 53:1103–1111PubMedCrossRefGoogle Scholar
  356. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648PubMedGoogle Scholar
  357. Pipe JG, Farthing VG, Forbes KP (2002) Multishot diffusion-weighted FSE using PROPELLER MRI. Magn Reson Med 47:42–52PubMedCrossRefGoogle Scholar
  358. Reese TG, Heid O, Weisskoff RM, Wedeen VJ (2003) Reduction of eddy current-induced distortion in diffusion MRI using a twice-refocused spin-echo. Magn Reson Med 49:177–182PubMedCrossRefGoogle Scholar
  359. Ries M, Jones RA, Dousset V, Moonen CT (2000) Diffusion tensor MRI of the spinal cord. Magn Reson Med 44:884–892PubMedCrossRefGoogle Scholar
  360. Rijswijk CS van, Kunz P, Hogendoorn PC, Taminiau AH, Doornbos J, Bloem JL (2002) Diffusion-weighted MRI in the characterization of soft-tissue tumors. J Magn Reson Imaging 15:302–307CrossRefGoogle Scholar
  361. Schick F (1997) SPLICE: sub-second diffusion-sensitive MR imaging using a modified fast spin-echo acquisition mode. Magn Reson Med 38:638–644PubMedCrossRefGoogle Scholar
  362. Sehy JV, Ackerman JJ, Neil JJ (2002) Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 48:765–770PubMedCrossRefGoogle Scholar
  363. Seifert MH, Jakob PM, Jellus V, Haase A, Hillenbrand C (2000) High-resolution diffusion imaging using a radial turbo-spin-echo sequence: implementation, eddy current compensation, and self-navigation. J Magn Reson 144:243–254PubMedCrossRefGoogle Scholar
  364. Skare S, Hedehus M, Moseley ME, Li TQ (2000) Condition number as a measure of noise performance of diffusion tensor data acquisition schemes with MRI. J Magn Reson 147:340–352PubMedCrossRefGoogle Scholar
  365. Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C (2005) Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage 26:1164–1173PubMedCrossRefGoogle Scholar
  366. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin-echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  367. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, Okuda T, Liang L, Ge Y, Komohara Y, Ushio Y, Takahashi M (1999) Usefulness of diffusion-weighted MRI with echo planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60PubMedCrossRefGoogle Scholar
  368. Sullivan EV, Pfefferbaum A (2003) Diffusion tensor imaging in normal aging and neuropsychiatric disorders. Eur J Radiol 45:244–255PubMedCrossRefGoogle Scholar
  369. Sullivan EV, Adalsteinsson E, Pfefferbaum A (2006) Selective age-related degradation of anterior callosal fiber bundles quantified in vivo with fiber tracking. Cereb Cortex 16:1030–1039PubMedCrossRefGoogle Scholar
  370. Taber KH, Pierpaoli C, Rose SE, Rugg-Gunn FJ, Chalk JB, Jones DK, Hurley RA (2002) The future for diffusion tensor imaging in neuropsychiatry. J Neuropsychiatry Clin Neurosci 14:1–5PubMedGoogle Scholar
  371. Taouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78PubMedCrossRefGoogle Scholar
  372. Taylor DG, Bushell MC (1985) The spatial mapping of translational diffusion coefficients by the NMR imaging technique. Phys Med Biol 30:345–349PubMedCrossRefGoogle Scholar
  373. Thomas DL, Pell GS, Lythgoe MF, Gadian DG, Ordidge RJ (1998) A quantitative method for fast diffusion imaging using magnetization-prepared TurboFLASH. Magn Reson Med 39:950–960PubMedCrossRefGoogle Scholar
  374. Tien RD, Felsberg GJ, Friedman H, Brown M, MacFall J (1994) MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. Am J Roentgenol 162:671–677Google Scholar
  375. Tofts PS, Lloyd D, Clark CA, Barker GJ, Parker GJ, McConville P, Baldock C, Pope JM (2000) Test liquids for quantitative MRI measurements of self-diffusion coefficient in vivo. Magn Reson Med 43:368–374PubMedCrossRefGoogle Scholar
  376. Torrey HC (1956) Bloch equations with diffusion terms. Phys Rev 104:563–565CrossRefGoogle Scholar
  377. Trouard TP, Sabharwal Y, Altbach MI, Gmitro AF (1996) Analysis and comparison of motion-correction techniques in diffusion-weighted imaging. J Magn Reson Imaging 6:925–935PubMedCrossRefGoogle Scholar
  378. Tsuchiya K, Katase S, Fujikawa A, Hachiya J, Kanazawa H, Yodo K (2003) Diffusion-weighted MRI of the cervical spinal cord using a single-shot fast spin-echo technique: findings in normal subjects and in myelomalacia. Neuroradiology 45:90–94PubMedGoogle Scholar
  379. Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372PubMedCrossRefGoogle Scholar
  380. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, Wedeen VJ (2002) High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med 48:577–582PubMedCrossRefGoogle Scholar
  381. Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386PubMedCrossRefGoogle Scholar
  382. Woessner DE (1961) Effects of diffusion in nuclear magnetic resonance spin-echo experiments. J Chem Phys 34:2057–2061CrossRefGoogle Scholar
  383. Wong EC, Cox RW, Song AW (1995) Optimized isotropic diffusion weighting. Magn Reson Med 34:139–143PubMedCrossRefGoogle Scholar
  384. Xing D, Papadakis NG, Huang CL, Lee VM, Carpenter TA, Hall LD (1997) Optimised diffusion-weighting for measurement of apparent diffusion coefficient (ADC) in human brain. Magn Reson Imaging 15:771–784PubMedCrossRefGoogle Scholar
  385. Adair ER (1996) Thermoregulation in the presence of microwave fields. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton, pp 403–433Google Scholar
  386. Adair ER, Berglund LG (1986) On the thermoregulatory consequences of NMR imaging. Magn Reson Imaging 4:321–333PubMedCrossRefGoogle Scholar
  387. Adair ER, Berglund LG (1989) Thermoregulatory consequences of cardiovascular impairment during NMR imaging in warm/humid environments. Magn Res Imaging 7:25–37CrossRefGoogle Scholar
  388. Ahlbom A, Green A, Kheifets L, Savitz D, Swerdlow A, ICNIRP Standing Committee on Epidemiology (2004) Epidemiology of health effects of radiofrequency exposure. Environ Health Perspect 112:1741–1754PubMedCrossRefGoogle Scholar
  389. ASTM International Standard F2052-02 (2005a) Standard test method for measurement of magnetically induced displacement force on medical devices in the magnetic resonance environmentGoogle Scholar
  390. ASTM International Standard F2503-05 (2005b) Standard practice for marking medical devices and other items for safety in the magnetic resonance environmentGoogle Scholar
  391. Athey TW (1989) A model of the temperature rise in the head due to magnetic resonance imaging procedures. Magn Reson Med 9:177–184PubMedCrossRefGoogle Scholar
  392. Bourland JD, Nyenhuis JA, Mouchawar GA, Geddes LA, Schaefer DJ, Riehl ME (1991) Z-gradient coil and eddy-current stimulation of skeletal and cardiac muscle in the dog. Society for Magnetic Resonance in Medicine, Proc. 10th Annual Meeting, San FranciscoGoogle Scholar
  393. Bourland JD, Nyenhuis JA, Schaefer DJ (1999) Physiologic effects of intense MR imaging gradient fields. Neuroimaging Clin N Am 9:363–377PubMedGoogle Scholar
  394. Brix G, Reinl M, Brinker G (2001) Sampling and evaluation of specific absorption rates during patient examinations performed on 1.5-Tesla MR systems. Magn Reson Imaging 19:769–779PubMedCrossRefGoogle Scholar
  395. Brix G, Seebass M, Hellwig G, Griebel J (2002) Estimation of heat transfer and temperature rise in partial-body regions during MR procedures: an analytical approach with respect to safety considerations. Magn Reson Imaging 20:65–76PubMedCrossRefGoogle Scholar
  396. Brody AS, Sorette MP, Gooding CA et al (1985) Induced alignment of flowing sickle erythrocytes in a magnetic field: a preliminary report. Invest Radiol 20:560–566PubMedCrossRefGoogle Scholar
  397. Chakeres DW, de Vocht F (2005) Static magnetic field effects on human subjects related to magnetic resonance imaging systems. Prog Biophys Molec Biol 87:255–265CrossRefGoogle Scholar
  398. Chakeres DW, Kangarlu A, Boudoulas H, Young DC (2003) Effect of static magnetic field exposure of up to 8 Tesla on sequential human vital sign measurements. J Magn Reson Imaging 18:346–352PubMedCrossRefGoogle Scholar
  399. Colletti PM (2001) Magnetic resonance procedures and pregnancy. In: Shellock FG (ed) Magnetic resonance procedures: health effects and safety. Boca Raton: CRC, Boca Raton, pp 149–182Google Scholar
  400. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ (2003) Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia 19:267–294PubMedCrossRefGoogle Scholar
  401. Donaldson GC, Keatinge WR, Saunders RD (2003) Cardiovascular responses to heat stress and their adverse consequences in healthy and vulnerable human polulations. Int J Hyperthermia 19:225–235PubMedCrossRefGoogle Scholar
  402. Edwards MJ, Saunders RD, Shiota K (2003) Effects of heat on embryos and foetuses. Int J Hyperthermia 19:295–324PubMedCrossRefGoogle Scholar
  403. Feychting M (2005) Health effects of static magnetic fields – a review of the epidemiological evidence. Prog Biophys Molec Biol 87:241–246CrossRefGoogle Scholar
  404. Foster KR, Schwan HP (1995).Dielectrical properties of tissues. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton, pp 25–102Google Scholar
  405. Gandhi OP, Chen XB (1999) Specific absorption rates and induced current densities for an anatomy-based model of the human for exposure to time-varying magnetic fields of MRI. Magn Reson Med 41:816–823PubMedCrossRefGoogle Scholar
  406. Goldstein LS, Dewhirst MW, Repacholi M, Kheifets L (2003) Summary, conclusions and recommendations: adverse temperature levels in the human body. Int J Hyperthermia 19:373–384 PubMedCrossRefGoogle Scholar
  407. Grissom CB (1995) Magnetic field effects in biology – a survey of possible mechanisms with emphasis on radical-pair recombination. Chemical Reviews 95:3–24CrossRefGoogle Scholar
  408. Hancock PA, Vasmatzidis I (2003) Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperthermia 19:355–372PubMedCrossRefGoogle Scholar
  409. Higashi T, Yamagishi A, Takeuchi T et al (1993) Orientation of erythrocytes in a strong static magnetic field. Blood 82:1328–1334PubMedGoogle Scholar
  410. Hore PJ (2005) Rapporteur’s report: sources and interactions mechanisms. Prog Biophys Molec Biol 87:205–212CrossRefGoogle Scholar
  411. International Agency for Research on Cancer (IARC) (2002) Static and extremely low frequency electric and magnetic fields. IARC Monographs on the evaluation of carcinogenic risks to humans, vol. 80Google Scholar
  412. International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1997) Non-thermal effects of rf electromagnetic fields. ICNIRP Report 3/97Google Scholar
  413. ICNIRP (1998). Guidelines for limiting exposure to time-varying electrical, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics 74:494–522Google Scholar
  414. ICNIRP (2002) General approach to protection against non-ionizing radiation. Health Physics 74:494–522Google Scholar
  415. ICNIRP (2003). Matthes R, Vecchia P, McKinlay AF, Veyret B, Bernhardt JH (eds) Review of the scientific evidence on dosimetry, biological effects, epidemiological observations, and health consequences concerning exposure to static and low frequency electromagnetic fields (0–100 kHz). Märkl, MunichGoogle Scholar
  416. ICNIRP (2004) Medical magnetic resonance (MR) procedures: protection of patients. Health Physics 87:197–216CrossRefGoogle Scholar
  417. International Electrotechnical Commission (IEC) (2002) Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. IEC 60601-2-33 (2nd edn.)Google Scholar
  418. Kanal E, Evans JA, Savitz DA, Shellock FG (1993) Survey of reproductive health among female MR workers. Radiology 187:395–399PubMedGoogle Scholar
  419. Kangarlu A, Burgess RE, Zhu H et al (1999) Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17:1407–1416PubMedCrossRefGoogle Scholar
  420. Knopp MV, Metzner R, Brix G, van Kaick G (1998) Sicherheitsaspekte zur Vermeidung strominduzierter Hautverbrennungen in der MRT. Radiologe 38:759–763 PubMedCrossRefGoogle Scholar
  421. Konermann G, Mönig H (1986) Untersuchungen über den Einfluß statischer Magnetfelder auf die pränatale Entwicklung der Maus. Radiologe 26:490–497PubMedGoogle Scholar
  422. Lepock JR (2003) Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage. Int J Hyperthermia 19:252–266PubMedCrossRefGoogle Scholar
  423. Maret G, von Schlickfus M, Mayer A, Dransfeld K (1975) Orientation of nucleic acids in high magnetic fields. Phys Rev Lett 35:397–400 CrossRefGoogle Scholar
  424. Medical Devices Agency (2002) Guidelines for magnetic resonance equipment in clinical use. Scholar
  425. Mevissen M, Buntenkötter S, Löscher W (1994) Effects of static and time-varying (50 Hz) magnetic fields on reproduction and fetal development in rats. Teratology 50:229–237PubMedCrossRefGoogle Scholar
  426. Michaelson SM, Swicord ML (1996) Interaction of nonmodulated and pulse modulated radio frequency fields with living matter: experimental results. In: Polk C, Postow E (eds) Handbook of biological effects of electromagnetic fields. CRC, Boca Raton, pp 435–533Google Scholar
  427. Miyakoshi J (2005) Effects of static magnetic fields at the cellular level. Prog Biophys Molec Biol 87:213–223CrossRefGoogle Scholar
  428. Murakami J, Torii Y and Masuda K (1992) Fetal development of mice following intrauterine exposure to a static magnetic field of 6.3 T. Magn Reson Imaging 10:433–437PubMedCrossRefGoogle Scholar
  429. Murayama M (1965) Orientation of sickled erythrocytes in a magnetic field. Nature 206:420–422PubMedCrossRefGoogle Scholar
  430. Okazaki R, Ootsuyama A, Uchida S, Norimura T (2001) Effects of a 4.7 static magnetic field on fetal development in ICR mice. J Radiat Res 42:273–283PubMedCrossRefGoogle Scholar
  431. Reilly JP (1998) Applied bioelectricity. From electrical stimulation to electropathology. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  432. Saunders R (2005) Static magnetic fields: animal studies. Prog Biophys Molec Biol 87:225–239CrossRefGoogle Scholar
  433. Schaefer DJ, Bourland JD, Nyenhuis JA (2000) Review of patient safety in time-varying gradient fields. J Magn Reson Imaging 12:20–29PubMedCrossRefGoogle Scholar
  434. Schenck JF (2000) Safety of strong, static magnetic fields. J Magn Reson Imaging 12:2–19PubMedCrossRefGoogle Scholar
  435. Schenck JF (2005) Physical interactions of static magnetic fields with living tissues. Prog Biophys Molec Biol 87:185–204CrossRefGoogle Scholar
  436. Schmitt F, Irnich W, Fischer H (1998) Physiological side effects of fast gradient switching. In: Schmitt F, Stehling ML, Turner R (eds) Echo planar imaging. Springer, Berlin Heidelberg New YorkGoogle Scholar
  437. Sharma HS, Hoopes PJ (2003) Hyperthermia-induced pathophysiology of the central nervous system. Int J Hyperthermia 19:325–354PubMedCrossRefGoogle Scholar
  438. Shellock FG (2000) Radiofrequency energy-induced heating during MR procedures: a review. J Magn Reson Med 12:30–36Google Scholar
  439. Shellock FG (2001) Patient monitoring in the magntic resonance environment. In: Shellock FG (ed) Magnetic resonance procedures: health effects and safety. CRC, Boca Raton pp 217–240 Google Scholar
  440. Shellock FG (2005) Reference manual for magnetic resonance safety, implants, and devices: 2005 edn. Biomedical Researc, Los AngelesGoogle Scholar
  441. Shellock FG, Crues JV (2004) MR procedures: biologic effects, safety, and patient care. Radiology 232:635–652PubMedCrossRefGoogle Scholar
  442. Shellock FG, Sawyer-Glover AM (2001) The magnetic resonance environment and implants, devices, and materials. In: Shellock FG (ed) Magnetic resonance procedures: health effects and safety. CRC, Boca Raton, pp 271–326 Google Scholar
  443. Shellock FG, Schaefer DJ, Kanal E (1994) Physiological responses to MR imaging at an SAR Level of 6.0 W/kg. Radiology 192:865–868PubMedGoogle Scholar
  444. Sikov MR, Mahlum DD, Montgomery LD, Decker JR (1979) Development of mice after intrauterine exposure to direct-current magnetic fields. In: Phillips RD, Gillis MF, Kaune WT, Mahlum DD (eds) Biological effects of extremely low frequency electromagnetic fields. 18th Hanford Life Sciences Symposium, Richland, Washington, October 1978. Springfield, Virginia, US Department of Energy, National Technical Information Service, pp 462–473, 1979Google Scholar
  445. Tenforde TS (2005) Magnetically induced electric fields and currents in the circulatory system. Prog Biophys Molec Biol 87:279–288CrossRefGoogle Scholar
  446. Tope WD, Shellock FG (2002) Magnetic resonance imaging and permanent cosmetics (tattoos): survey of complications and adverse events. J Magn Reson Imging 15:180–184CrossRefGoogle Scholar
  447. US Food and Drug Administration (2003) Center for Devices and Radiological Health. Criteria for significant risk investigations of magnetic resonance diagnostic devices. Scholar
  448. Vocht F de, van-Wendel-de-Joode B, Engels H, Kromhout H (2003).Neurobehavioral effects among subjects exposed to high static and gradient magnetic fields from a 1.5 Tesla magnetic resonance imaging system: case-crossover pilot study. Magn Reson Med 50:670–674Google Scholar
  449. World Health Organization (WHO) (1993) United Nations Environment Programme/Word Health Organisation/International Radiation Protection Association: environmental health criteria 137, electromagnetic fields (300Hz to 300 GHz). WHO Press, BrussellsGoogle Scholar
  450. WHO (2006) Environmental health criteria 232, static fields. WHO Press, BrussellsGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gunnar Brix
    • 1
  • Heinrich Kolem
    • 2
  • Wolfgang R. Nitz
    • 3
  • Michael Bock
    • 4
  • Alexander Huppertz
    • 5
  • Cristoph J. Zech
    • 6
  • Olaf Dietrich
    • 7
  1. 1.Division of Medical Radiation HygieneFederal Office for Radiation ProtectionOberschleißheimGermany
  2. 2.Customer Solutions Group, PresidentSiemens Medical Solutions USA, IMalvernUSA
  3. 3.Medical SolutionsSiemens AGErlangenGermany
  4. 4.Division of Medical Physics in RadiologyGerman Cancer Research CenterHeidelbergGermany
  5. 5.Imaging Science InstituteCharité Berlin-SiemensBerlinGermany
  6. 6.Department of Clinical RadiologyUniversity Hospitals Innenstadt, Ludwig-Maximilian UniversityMunichGermany
  7. 7.University Hospitals Großhadern, Institute of Clinical RadiologyLudwig-Maximilian UniversityMunichGermany

Personalised recommendations