Persistent Hyperinsulinemic Hypoglycemia

  • Pascale de Lonlay
  • Jean-Marie Saudubray


Hyperinsulinism can occur throughout childhood but is most common in infancy. Persistent hyperinsulinemic hypoglycemia of infancy (PHHI) is the most important cause of hypoglycemia in early infancy. The excessive secretion of insulin is responsible for profound hypoglycemia and requires aggressive treatment to prevent severe and irreversible brain damage. Onset can be in the neonatal period or later, with the severity of hypoglycemia decreasing with age. PHHI is a heterogeneous disorder with two histopathological lesions, diffuse (DiPHHI) and focal (FoPHHI), which are clinically indistinguishable. FoPHHI is sporadic and characterized by somatic islet-cell hyperplasia. DiPHHI corresponds to a functional abnormality of insulin secretion in the whole pancreas and is most often recessive although rare dominant forms can occur, usually outside the newborn period. Differentiation between focal and diffuse lesions is important because the therapeutic approach and genetic counselling differ radically. PET scanning with 18-fluoro-dopa can distinguish between focal and diffuse PHHI. A combination of glucose and glucagon is started as an emergency treatment as soon as a tentative diagnosis of PHHI is made. This is followed by diazoxide and other medication. Patients who are resistant to medical treatment require pancreatectomy; FoPHHI can be definitively cured by a limited pancreatectomy, but DiPHHI requires a subtotal pancreatectomy, following which there is a high risk of diabetes mellitus. Persistent hyperinsulinism in older children is most commonly caused by pancreatic adenoma.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stanley CA (1997) Hyperinsulinism in infants and children. Pediatr Clin North Am 44:363–374PubMedCrossRefGoogle Scholar
  2. 2.
    Thomas CG Jr, Underwood LE, Carney CN et al (1977) Neonatal and infantile hypoglycemia due to insulin excess: new aspects of diagnosis and surgical management. Ann Surg 185:505–517PubMedGoogle Scholar
  3. 3.
    Touati G, Poggi-Travert F, Ogier de Baulny H et al (1998) Longterm treatment of persistent hyperinsulinaemic hypoglycaemia of infancy with diazoxide: a retrospective review of 77 cases and analysis of efficacy-predicting criteria. Eur J Pediatr 157:628–633PubMedCrossRefGoogle Scholar
  4. 4.
    de Lonlay P, Cormier-Daire V, Fournet JC et al (2002) Facial dysmorphism in persistent hyperinsulinemic hypoglycemia. Am J Med Genet 111:130–133PubMedCrossRefGoogle Scholar
  5. 5.
    de Lonlay P, Cuer M, Barrot S et al (1999) Hyperinsulinemic hypoglycemia as presenting symptom of carbohydrate-deficiency glycoproteins. J Pediatr 135:379–383PubMedCrossRefGoogle Scholar
  6. 6.
    Raizen DM, Brooks-Kayal A, Steinkrauss L et al (2005) Central nervous system hyperexcitability associated with glutamate dehydrogenase gain of function mutations. J Pediatr 146:388–394PubMedCrossRefGoogle Scholar
  7. 7.
    Otonkoski T, Kaminen N, Ustinov J et al (2003) Physical exerciseinduced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 52:199–204PubMedGoogle Scholar
  8. 8.
    Hojlund K, Hansen T, Lajer M et al (2004) A novel syndrome of autosomal-dominant hyperinsulinemic hypoglycemia linked to a mutation in the human insulin receptor gene. Diabetes 53:1592–1598PubMedGoogle Scholar
  9. 9.
    Dunne MJ, Cosgrove KE, Shepherd RM et al (2004) Hyperinsulinism in infancy: from basic science to clinical disease. Physiol Rev 84:239–275PubMedCrossRefGoogle Scholar
  10. 10.
    Thomas PM, Cote GJ, Wohllk N et al (1995) Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268:426–429PubMedGoogle Scholar
  11. 11.
    Nestorowicz A, Wilson BA, Schoor KP et al (1996) Mutations in the sulfonylurea receptor gene are associated with familial hyperinsulinism in Ashkenazi Jews. Hum Mol Genet 5:1813–822PubMedCrossRefGoogle Scholar
  12. 12.
    Thomas P, Ye Y, Lightner E (1996) Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum Mol Genet 5:1809–1812PubMedCrossRefGoogle Scholar
  13. 13.
    Nestorowicz A, Inagaki N, Gonoi T et al (1997) A nonsense mutation in the inward rectifier potassium chaannel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 46:1743–1748PubMedGoogle Scholar
  14. 14.
    Glaser B, Kesavan P, Heyman M et al (1998) Familial hyperinsulinism caused by an activating glucokinase mutation. N Engl J Med 338:226–230PubMedCrossRefGoogle Scholar
  15. 15.
    Stanley CA, Lieu Y, Hsu B et al (1998) Hyperinsulinemia and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338:1352–1357PubMedCrossRefGoogle Scholar
  16. 16.
    Clayton PT, Eaton S, Aynsley-Green A et al (2001) Hyperinsulinism in short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency reveals the importance of beta-oxidation in insulin secretion. J Clin Invest 108:457–465PubMedCrossRefGoogle Scholar
  17. 17.
    Thornton PS, Sumner AE, Ruchelli ED et al (1991) Familial and sporadic hyperinsulinism: histopathological findings and segregation analysis support a single autosomal recessive disorder. J Pediatr 119:721–724PubMedCrossRefGoogle Scholar
  18. 18.
    de Lonlay P, Fournet JC, Rahier J et al (1997) Somatic deletion of the imprinted 11p15 region in sporadic persistent hyperinsulinemic hypoglycemia of infancy is specific of focal adenomatous hyper plasia and endorses partial pancreatectomy. J Clin Invest 100:802–807PubMedCrossRefGoogle Scholar
  19. 19.
    Verkarre V, Fournet JC, de Lonlay P et al (1998) Maternal allele loss with somatic reduction to homozygosity of the paternally-inherited mutation of the SUR1 gene leads to congenital hyperinsulinism in focal islet cell adenomatous hyperplasia of the pancreas. J Clin Invest 102:1286–1291PubMedGoogle Scholar
  20. 20.
    Huopio H, Otonkosko T, Vauhkomen I et al (2003) A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet 361:301–307PubMedCrossRefGoogle Scholar
  21. 21.
    Larsson C, Skogseid B, Oberg K et al (1988) Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 332:85–87PubMedCrossRefGoogle Scholar
  22. 22.
    Demeure MJ, Klonoff DC, Karam JH et al (1991) Insulinomas associated with multiple endocrine neoplasia type 1: the need for a different surgical approach. Surgery 110:998–1004PubMedGoogle Scholar
  23. 23.
    Bassett JH, Forbes SA, Pannett AA et al (1998) Characterization of mutations in patients with multiple endocrine neoplasia type 1. Am J Hum Genet 62:232–244PubMedCrossRefGoogle Scholar
  24. 24.
    Agarwal SK, Kester MB, Debelenko LV et al (1997) Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type 1 and related states. Hum Mol Genet 6:1169–1175PubMedCrossRefGoogle Scholar
  25. 25.
    Guru SC, Goldsmith PK, Burns AL et al (1998) Menin, the product of the MEN1 gene, is a nuclear protein. Proc Natl Acad Sci USA 95:1630–1634PubMedCrossRefGoogle Scholar
  26. 26.
    Patel P, O’Rahilly S, Buckle V et al (1990) Chromosome 11 allele loss in sporadic insulinoma. J Clin Pathol 43:377–378PubMedGoogle Scholar
  27. 27.
    Kim H, Kerr A, Morehouse H (1995) The association between tuberous sclerosis and insulinoma. Am J Neuroradiol 16:1543–1544PubMedGoogle Scholar
  28. 28.
    Stanley CA, Baker L (1976) Hyperinsulinism in infancy: diagnosis by demonstration of abnormal response to fasting hypoglycemia. Pediatrics 57:702–711PubMedGoogle Scholar
  29. 29.
    Sempoux C, Guiot Y, Lefevre A et al (1998) Neonatal hyperinsulinemic hypoglycemia: heterogeneity of the syndrome and keys for differential diagnosis. J Clin Endocrinol Metab 83:1455–1461PubMedCrossRefGoogle Scholar
  30. 30.
    Klöppel G. (1997) Nesidioblastosis. In: Soleia E, Capella C, Klöppel G (eds) Tumors of the pancreas. AFIP, Washington, pp 238–243Google Scholar
  31. 31.
    Goossens A, Gepts W, Saudubray JM et al (1989) Diffuse and focal nesidioblastosis. A clinicopathological study of 24 patients with persistent neonatal hyperinsulinemic hypoglycemia. Am J Surg Pathol 3:766–775CrossRefGoogle Scholar
  32. 32.
    Goudswaard WB, Houthoff HJ, Koudstaal J et al (1986) Nesidioblastosis and endocrine hyperplasia of the pancreas: a secondary phenomenon. Hum Pathol 17:46–53PubMedGoogle Scholar
  33. 33.
    Rahier J, Fält K, Müntefering H et al (1984) The basic structural lesion of persistent neonatal hypoglycaemia with hyperinsulinism: deficiency of pancreatic D cells or hyperactivity of B cells? Diabetologia 26:282–289PubMedCrossRefGoogle Scholar
  34. 34.
    Jaffé R, Hashida Y, Yunis EJ (1980) Pancreatic pathology in hyperinsulinemic hypoglycemia of infancy. Lab Invest 42:356–365PubMedGoogle Scholar
  35. 35.
    Rahier J, Sempoux C, Fournet JC et al 1998) Partial or near-total pancreatectomy for persistent neonatal hyperinsulinaemic hypoglycaemia: the pathologist’s role. Histopathology 32:15–19PubMedCrossRefGoogle Scholar
  36. 36.
    Lyonnet S, Bonnefont JP, Saudubray JM et al (1989) Localisation of focal lesion permitting partial pancreatectomy in infants. Lancet 2:671PubMedCrossRefGoogle Scholar
  37. 37.
    Brunelle F, Negre V, Barth MO et al (1989) Pancreatic venous samplings in infants and children with primary hyperinsulinism. Pediatr Radiol 19:100–103PubMedCrossRefGoogle Scholar
  38. 38.
    Dubois J, Brunelle F, Touati G et al (1995) Hyperinsulinism in children: diagnostic value of pancreatic venous sampling correlated with clinical, pathological and surgical outcome in 25 cases. Pediatr Radiol 25:512–516PubMedCrossRefGoogle Scholar
  39. 39.
    Santiago-Ribeiro MJ, de Lonlay P, Delzescaux T et al (2005) Noninvasive differential diagnosis of hyperinsulinism of infancy using positron emission tomography and [18F]-fluoro-L-DOPA. J Nucl Med 46:560–566Google Scholar
  40. 40.
    Stanley CA, Thornton PS, Ganguly A et al (2004) Preoperative evaluation of infants with focal or diffuse congenital hyperinsulinism by intravenous acute insulin response tests and selective pancreatic arterial calcium stimulation. J Clin Endocrinol Metab 89:288–296PubMedCrossRefGoogle Scholar
  41. 41.
    Giurgea I, Laborde K, Touati G et al (2004) Acute insulin responses to calcium and tolbutamide do not differentiate focal from diffuse congenital hyperinsulinism. J Clin Endocrinol Metab 89:925–929PubMedCrossRefGoogle Scholar
  42. 42.
    Thornthon PS, Alter CA, Levitt Katz LE et al (1993) Short-and long term use of octreotide in the tretment of congenital hyperinsulinism. J Pediatr 123:637–643CrossRefGoogle Scholar
  43. 43.
    Shilyanski J, Fisher S, Cutz E et al (1997) Is 95% pancreatectomy the procedure of choice for treatment of persistent hyperinslininemic hypoglycemia of the neonate? J Pediatr Surg 32:342–346CrossRefGoogle Scholar
  44. 44.
    de Lonlay-Debeney P, Poggi-Travert F, Fournet JC et al (1999) Clinical aspects and course of neonatal hyperinsulinism. N Engl J Med 340:1169–1175PubMedCrossRefGoogle Scholar
  45. 45.
    Menni P, de Lonlay P, Sevin C et al (2001) Neurologic outcomes of 90 neonates and infants with persistent hyperinsulinemic hypoglycemia. Pediatrics 107:476–479PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2006

Authors and Affiliations

  • Pascale de Lonlay
    • 1
  • Jean-Marie Saudubray
    • 2
  1. 1.Unité de Métabolisme, Département de PédiatrieHôpital Necker-Enfants MaladesParis Cedex 15France
  2. 2.Unité de Métabolisme, Département de PédiatrieHôpital Necker Enfants MaladesParis Cedex 15France

Personalised recommendations