Cooperative Transport of Objects of Different Shapes and Sizes

  • Roderich Groß
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3172)

Abstract

This paper addresses the design of control policies for groups of up to 16 simple autonomous mobile robots (called s-bots) for the cooperative transport of heavy objects of different shapes and sizes. The s-bots are capable of establishing physical connections with each other and with the object (called prey). We want the s-bots to self-assemble into structures which pull or push the prey towards a target location.

The s-bots are controlled by neural networks that are shaped by artificial evolution. The evolved controllers perform quite well, independently of the shape and size of the prey, and allow the group to transport the prey towards a moving target. Additionally, the controllers evolved for a relatively small group can be applied to larger groups, making possible the transport of heavier prey. Experiments are carried out using a physics simulator, which provides a realistic simulation of real robots, which are currently under construction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deneubourg, J.-L., Goss, S.: Collective patterns and decision-making. Ethology, Ecology and Evolution 1, 295–311 (1989)CrossRefGoogle Scholar
  2. Deneubourg, J.-L., Goss, S., Sandini, G., Ferrari, F., Dario, P.: Self-organizing collection and transport of objects in unpredictable environments. In: Proceedings of Japan – U.S.A Symposium on Flexible Automation, Kyoto, Japan. ISCIE, pp. 1093–1098 (1990)Google Scholar
  3. Dorigo, M., Sa̧hin, E.: Swarm robotics – special issue editorial. Autonomous Robots 17(2-3), 111–113 (2004)CrossRefGoogle Scholar
  4. Dorigo, M., Trianni, V., Sa̧hin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., Gambardella, L.M.: Evolving selforganizing behaviors for a swarm-bot. Autonomous Robots 17(2-3), 223–245 (2004)CrossRefGoogle Scholar
  5. Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)CrossRefGoogle Scholar
  6. Grassé, P.: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)Google Scholar
  7. Groß, R.: Swarm-intelligent robotics in prey retrieval tasks. Technical Report TR/IRIDIA/2003-27, IRIDIA, Université Libre de Bruxelles, Belgium, DEA thesis (2003)Google Scholar
  8. Groß, R., Dorigo, M.: Evolving a cooperative transport behavior for two simple robots. In: Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS, vol. 2936, pp. 305–316. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. Kato, T., Floreano, D.: An evolutionary active-vision system. In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC 2001), pp. 107–114. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  10. Kube, C., Bonabeau, E.: Cooperative transport by ants and robots. Robotics and Autonomous Systems 30(1-2), 85–101 (2000)CrossRefGoogle Scholar
  11. Kube, C., Zhang, H.: Collective robotic intelligence. In From Animals to Animats. In: Proceedings of the Second International Conference on Simulation of Adaptive Behavior, MIT Press, Cambridge (1993a)Google Scholar
  12. Kube, C., Zhang, H.: Collective robotics: from social insects to robots. Adaptive Behaviour 2(2), 189–218 (1993b)CrossRefGoogle Scholar
  13. Marocco, D., Floreano, D.: Active vision and feature selection in evolutionary behavioral systems. In: From Animals to Animats 7: Proceedings of the Seventh International Conference on Simulation of Adaptive Behavior, pp. 247–255. MIT Press, Cambridge (2002)Google Scholar
  14. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: A new distributed robotic concept. Autonomous Robots 17(2-3), 193–221 (2004)CrossRefGoogle Scholar
  15. Rechenberg, I.: Cybernetic Solution Path of an Experimental Problem. PhDthesis,Royal Aircraft Establishment, Hants Farnborough, UK 1965Google Scholar
  16. Schwefel, H.-P.: Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische Universität Berlin, Germany (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Roderich Groß
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations