Using the \(\mathcal{M}\)oise +  for a Cooperative Framework of MAS Reorganisation

  • Jomi Fred Hübner
  • Jaime Simão Sichman
  • Olivier Boissier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3171)

Abstract

Reorganisation within a multi-agent system may be managed by the agents themselves by adapting the organisation to both environmental changes and their own goals. In this paper, we propose an organisation-centred model for controlling this process. Using the \(\mathcal{M}\)oise +  organisation model, we are able to define an organisational structure bearing on a reorganisation process along four phases: monitoring (when to reorganise), design (ways of building a new organisation), selection (how to choose an organisation), and implementation (how to change the current running organisation). The proposed reorganisation scheme is evaluated in the robot soccer domain where we have developed players that follow the team organisation specified in \(\mathcal{M}\)oise + . A special group of agents may change this organisation, and thus the team behaviour, using reinforcement learning for the selection phase.

Keywords

Autonomous Agents and Multi-Agent Systems MAS organizations groups societies reoranization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balch, T.: Teambots (2000), http://www.teambots.org
  2. 2.
    Carron, T., Boissier, O.: Towards a temporal organizational structure language for dynamic multi-agent systems. In: Proceedings of the MAAMAW 2001 (Annecy 2001)Google Scholar
  3. 3.
    Dignum, V., Dignum, F.: Modelling agent societies: Co-ordination frameworks and institutions. In: Brazdil, P., Jorge, A. (eds.) Proceedings of the EPIA 2001, Berlin, pp. 191–204. Springer, Heidelberg (2001)Google Scholar
  4. 4.
    Galbraith, J.: Organization Design. Addison-Wesley, Reading (1977)Google Scholar
  5. 5.
    Gasser, L.: Organizations in multi-agent systems. In: Pre-Proceeding of the MAAMAW 2001 (Annecy 2001)Google Scholar
  6. 6.
    Horling, B., Benyo, B., Lesser, V.: Using self-diagnosis to adapt organizational structures. In: Proceedings of the Agents 2001 (2001)Google Scholar
  7. 7.
    Hübner, J.F., Sichman, J.S., Boissier, O.: A model for the structural, functional, and deontic specification of organizations in multiagent systems. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Lemaître, C., Excelente, C.B.: Multi-agent organization approach. In: Garijo, F.J., Lemaître, C. (eds.) Proceedings of II Iberoamerican Workshop on DAI and MAS (1998)Google Scholar
  9. 9.
    Murphy, R.R.: Introduction to AI robotics. Bradford Book/MIT Press (2000)Google Scholar
  10. 10.
    So, Y., Durfee, E.H.: An organizational self-design model for organizational change. In: Proceedings of AAAI 1993 Workshop on AI and Theories of Groups and Organizations (1993)Google Scholar
  11. 11.
    Stone, P., Veloso, M.M.: Task decomposition and dynamic role assignment for real-time strategic teamwork. In: Müller, J.P., Singh, M.P., Rao, A.S. (eds.) Proceedings of the ATAL 1998, Berlin, pp. 293–308. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Bradford, Cambridge (1998)Google Scholar
  13. 13.
    Tambe, M., Pynadath, D.V., Chauvat, N.: Building dynamic agent organizations in cyberspace. IEEE Internet Computing 4(2) (2001)Google Scholar
  14. 14.
    Wooldridge, M., Jennings, N.R., Kinny, D.: A methodology for agent-oriented analysis and design. In: Proceedings of the Agent’s 1999, ACM, New York (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jomi Fred Hübner
    • 1
  • Jaime Simão Sichman
    • 1
  • Olivier Boissier
    • 2
  1. 1.LTI / EP / USPSão Paulo
  2. 2.SMA / SIMMO / ENSM.SESaint-Etienne CedexFrance

Personalised recommendations