On Stopping Criteria for Genetic Algorithms

  • Martín Safe
  • Jessica Carballido
  • Ignacio Ponzoni
  • Nélida Brignole
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3171)


In this work we present a critical analysis of various aspects associated with the specification of termination conditions for simple genetic algorithms. The study, which is based on the use of Markov chains, identifies the main difficulties that arise when one wishes to set meaningful upper bounds for the number of iterations required to guarantee the convergence of such algorithms with a given confidence level. The latest trends in the design of stopping rules for evolutionary algorithms in general are also put forward and some proposals to overcome existing limitations in this respect are suggested.


stopping rule genetic algorithm Markov chains convergence analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brassard, G., Bratley, P.: Algorithmics: Theory and Practice. Prentice-Hall, Inc., New Jersey (1988)zbMATHGoogle Scholar
  2. 2.
    Bäck, T., Hammel, U., Schwefel, H.P.: Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation 1, 3–17 (1997)CrossRefGoogle Scholar
  3. 3.
    Eiben, Á.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3, 124–141 (1999)CrossRefGoogle Scholar
  4. 4.
    Meyer, L., Feng, X.: A fuzzy stop criterion for genetic algorithms using performance estimation. In: Proceedings of the Third IEEE Conference on Fuzzy Systems, pp. 1990–1995 (1994)Google Scholar
  5. 5.
    Howell, M., Gordon, T., Brandao, F.: Genetic learning automata for function optimization. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 32, 804–815 (2002)CrossRefGoogle Scholar
  6. 6.
    Carballido, J.A., Ponzoni, I., Brignole, N.B.: Evolutionary techniques for the travelling salesman problem. In: Rosales, M.B., Cortínez, V.H., Bambill, D.V. (eds.) Mecánica Computacional. Volume XXII. Asociación Argentina de Mecánica Computacional, pp. 1286–1294 (2003)Google Scholar
  7. 7.
    Aytug, H., Koehler, G.J.: Stopping criterion for finite length genetic algorithms. INFORMS Journal on Computing 8, 183–191 (1996)zbMATHCrossRefGoogle Scholar
  8. 8.
    Aytug, H., Koehler, G.J.: New stopping criterion for genetic algorithms. European Journal of Operational Research 126, 662–674 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Greenhalgh, D., Marshall, S.: Convergence criteria for genetic algorithms. SIAM Journal on Computing 20, 269–282 (2000)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)zbMATHGoogle Scholar
  11. 11.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman, Inc., Reading (1989)zbMATHGoogle Scholar
  12. 12.
    Nix, A.E., Vose, M.D.: Modeling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence 5, 79–88 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Davis, T.E., Príncipe, J.C.: A Markov chain framework for the simple genetic algorithm. Evolutionary Computation 1, 269–288 (1993)CrossRefGoogle Scholar
  14. 14.
    Rudolph, G.: Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks 5, 96–101 (1994)CrossRefGoogle Scholar
  15. 15.
    Poli, R.: Exact schema theorem and effective fitness for GP with one-point crossover. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, I.C., Beyer, H.G. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, pp. 469–476. Morgan Kaufmann, San Francisco (2000)Google Scholar
  16. 16.
    Çínlar, E.: Introduction to Stochastic Processes. Prentice-Hall, Inc., Englewood Cliffs (1975)zbMATHGoogle Scholar
  17. 17.
    De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Markov chains to analyze GAFOs. In: Whitley, L.D., Vose, M.D. (eds.) Proceedings of the Third Workshop on Foundations of Genetic Algorithms, pp. 115–137. Morgan Kaufmann, San Francisco (1995)Google Scholar
  18. 18.
    Hart, W.E., Baden, S., Belew, R.K., Kohn, S.: Analysis of the numerical effects of parallelism on a parallel genetic algorithm. In: Proceedings of the 10th International Parallel Processing Symposium, pp. 606–612. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  19. 19.
    Sena, G.A., Megherbi, D., Isern, G.: Implementation of a parallel genetic algorithm on a cluster of workstations: travelling salesman problem, a case study. Future Generation Computer Systems 17, 477–488 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Transactions on Evolutionary Computation 6, 443–462 (2002)CrossRefGoogle Scholar
  21. 21.
    Veldhuizen, D.A.V., Zydallis, J.B., Lamont, G.B.: Considerations in engineering parallel multiobjetive evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7, 144–173 (2003)CrossRefGoogle Scholar
  22. 22.
    De Jong, K.A.: Genetic algorithms are NOT function optimizers. In: Whitley, L.D. (ed.) Proceedings of the Second Workshop on Foundations of Genetic Algorithms, pp. 5–17. Morgan Kaufmann, San Francisco (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Martín Safe
    • 1
  • Jessica Carballido
    • 1
    • 2
  • Ignacio Ponzoni
    • 1
    • 2
  • Nélida Brignole
    • 1
    • 2
  1. 1.Grupo de Investigación y Desarrollo en Computación Científica (GIDeCC), Departamento de Ciencias e Ingeniería de la ComputaciónUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Planta Piloto de Ingeniería Química – CONICETComplejo CRIBABBBahía BlancaArgentina

Personalised recommendations