Advertisement

Verifying Finite-State Graph Grammars: An Unfolding-Based Approach

  • Paolo Baldan
  • Andrea Corradini
  • Barbara König
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3170)

Abstract

We propose a framework where behavioural properties of finite-state systems modelled as graph transformation systems can be expressed and verified. The technique is based on the unfolding semantics and it generalises McMillan’s complete prefix approach, originally developed for Petri nets, to graph transformation systems. It allows to check properties of the graphs reachable in the system, expressed in a monadic second order logic.

Keywords

Model Check Graph Transformation Type Graph Graph Grammar Reachable Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., König, B.: A static analysis technique for graph transformation systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 381–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Baldan, P., Corradini, A., König, B.: An unfolding-based approach for the verification of finite-state graph grammars. Technical report, Dipartimento di Informatica, Università Ca’ Foscari di Venezia (to appear, 2004)Google Scholar
  3. 3.
    Baldan, P., Corradini, A., Montanari, U.: Unfolding and event structure semantics for graph grammars. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 73–89. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri nets, asymmetric event structures and processes. Information and Computation 171(1), 1–49 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Baldan, P., König, B., König, B.: A logic for analyzing abstractions of graph transformation systems. In: Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 255–272. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Corradini, A., Montanari, U., Rossi, F.: Graph processes. Fundamenta Informaticae 26, 241–265 (1996)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic Approaches to Graph Transformation I: Basic Concepts and Double Pushout Approach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  8. 8.
    Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  9. 9.
    Ehrig, H., Kreowski, J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)zbMATHGoogle Scholar
  10. 10.
    Esparza, J.: Model checking using net unfoldings. Science of Computer Programming 23(2–3), 151–195 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. Formal Methods in System Design 20(20), 285–310 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Gadducci, F., Heckel, R., Koch, M.: A fully abstract model for graph-interpreted temporal logic. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 310–322. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Heckel, R.: Compositional verification of reactive systems specified by graph transformation. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 138–153. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Holzmann, G.J.: The model checker SPIN. IEEE Trans. on Software Engineering 23(5), 279–295 (1997)CrossRefGoogle Scholar
  15. 15.
    König, B.: A general framework for types in graph rewriting. In: Kapoor, S., Prasad, S. (eds.) FST TCS 2000. LNCS, vol. 1974, pp. 373–384. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Langerak, R.: Transformation and Semantics for LOTOS. PhD thesis, Department of Computer Science, University of Twente (1992)Google Scholar
  17. 17.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)CrossRefzbMATHGoogle Scholar
  18. 18.
    Pinna, G.M., Poigné, A.: On the nature of events: another perspective in concurrency. Theoretical Computer Science 138(2), 425–454 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Rensink, A.: Towards model checking graph grammars. In: Proc. of the 3rd Workshop on Automated Verification of Critical Systems, Technical Report DSSE–TR–2003–2, pp. 150–160. University of Southampton (2003)Google Scholar
  20. 20.
    Ribeiro, L.: Parallel Composition and Unfolding Semantics of Graph Grammars. PhD thesis, Technische Universität Berlin (1996)Google Scholar
  21. 21.
    Varró, D.: Towards symbolic analysis of visual modelling languages. In: EUROSAM 1979 and ISSAC 1979. Electronic Notes in Computer Science, vol. 72.3, pp. 57–70. Elsevier, Amsterdam (1979)Google Scholar
  22. 22.
    Vogler, W.: Efficiency of asynchronous systems and read arcs in Petrinets. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 538–548. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  23. 23.
    Vogler, W., Semenov, A., Yakovlev, A.: Unfolding and finite prefix for nets with read arcs. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 501–516. Springer, Heidelberg (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Paolo Baldan
    • 1
  • Andrea Corradini
    • 2
  • Barbara König
    • 3
  1. 1.Dipartimento di InformaticaUniversità Ca’ Foscari di VeneziaItaly
  2. 2.Dipartimento di InformaticaUniversità di PisaItaly
  3. 3.Institut für Formale Methoden der InformatikUniversität StuttgartGermany

Personalised recommendations