Model Checking Restricted Sets of Timed Paths

  • Nicolas Markey
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3170)

Abstract

In this paper, we study the complexity of model-checking formulas of three important real-time logics (MTL, MITL, and TCTL) over restricted sets of timed paths. The classes of restricted sets of timed paths that we consider are (i) a single finite (or ultimately periodic) timed path, (ii) a infinite set of finite (or infinite) timed paths defined by a finite (or ultimately periodic) path in a region graph, (iii) a infinite set of finite (or infinite) timed paths defined by a finite (or ultimately periodic) path in a zone graph.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-Checking in Dense Real-Time. Information and Computation 104(1), 2–34 (1993)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43(1), 116–146 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: A Really Temporal Logic. Journal of the ACM 41(1), 181–203 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alur, R., Kurshan, R.P., Viswanathan, M.: Membership Question for Timed and Hybrid Automata. In: Proc. 19th Symp. Real-Time Systems (RTS 98), December 1998, pp. 254–263. IEEE Comp. Soc. Press, Los Alamitos (1998)Google Scholar
  6. 6.
    Bouajjani, A., Tripakis, S., Yovine, S.: On-the-Fly Symbolic Model Checking for Real-Time Systems. In: Proc. 18th Symp. Real-Time Systems (RTS 1997), December 1997, pp. 25–35. IEEE Comp. Soc. Press, Los Alamitos (1997)CrossRefGoogle Scholar
  7. 7.
    Bruyère, V., Dall’Olio, E., Raskin, J.-F.: Durations, Parametric Model Checking in Timed Automata with Presburger Arithmetic. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Courcoubetis, C., Yannakakis, M.: Minimum and Maximum Delay Problems in Real-Time Systems. Formal Methods in System Design 1(4), 385–415 (1992)CrossRefMATHGoogle Scholar
  9. 9.
    Manna, Z., Pnueli, A.: Verifying Hybrid Systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 4–35. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  10. 10.
    Markey, N., Schnoebelen, P.: Model Checking a Path. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 251–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Thati, P., Roşu, G.: Monitoring Algorithms for Metric Temporal Logic Specifications. In: Havelund, K., Roşu, G. (eds.) Proc. 4th Intl Workshop on Runtime Verification (RV 2004), April 2004. ENTCS, pp. 131–147. Elsevier Science, Amsterdam (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Nicolas Markey
    • 1
  • Jean-François Raskin
    • 1
  1. 1.Département d’InformatiqueUniversité Libre de Bruxelles Bld du TriompheBrusselsBelgium

Personalised recommendations