Reversible Communicating Systems

  • Vincent Danos
  • Jean Krivine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3170)

Abstract

One obtains in this paper a process algebra RCCS, in the style of CCS, where processes can backtrack. Backtrack, just as plain forward computation, is seen as a synchronization and incurs no additional cost on the communication structure. It is shown that, given a past, a computation step can be taken back if and only if it leads to a causally equivalent past.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Milner, R.: Communication and Concurrency. In: International Series on Computer Science. Prentice Hall, Englewood Cliffs (1989)Google Scholar
  2. 2.
    Lévy, J.-J.: Réductions optimales en λ-calcul. PhD (1978)Google Scholar
  3. 3.
    Berry, G., Lévy, J.-J.: Minimal and optimal computation of recursive programs. JACM 26, 148–175 (1979)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical processes using the π-calculus process algebra. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 6, pp. 459–470. World Scientific Press, Singapore (2001)Google Scholar
  5. 5.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a stochastic name-passing calculus to representation and simulation of molecular processes. Information Processing Letters (2001)Google Scholar
  6. 6.
    Danos, V., Krivine, J.: Formal molecular biology done in CCS. In: Proceedings of BIO-CONCUR’03. Electronic Notes in Theoretical Computer Science, Marseille, France. Elsevier, Amsterdam (2003)Google Scholar
  7. 7.
    Prasad, K.V.S.: Combinators and bisimulation proofs for restartable systems. PhD (1987)Google Scholar
  8. 8.
    Bergstra, J.A., Ponse, A., van Wamel, J.: Process algebra with backtracking. In: REX School Symposium, pp. 46–91 (1993)Google Scholar
  9. 9.
    Boudol, G., Castellani, I.: Permutation of transitions: An event structure semantics for CCS and SCCS. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency. LNCS, vol. 354, pp. 411–427. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  10. 10.
    Degano, P., Nicola, R.D., Montanari, U.: A partial ordering semantics for CCS. Theoretical Computer Science 75, 223–262 (1990)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Boudol, G., Castellani, I., Hennesy, M., Kiehn, A.: Observing localities. In: MFCS 1991, vol. 114, pp. 31–61 (1991)Google Scholar
  12. 12.
    Degano, P., Priami, C.: Proved trees. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 629–640. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  13. 13.
    Boudol, G., Castellani, I., Hennesy, M., Kiehn, A.: A theory of processes with localities. Formal Aspect of Computing (1992)Google Scholar
  14. 14.
    Castellani, I.: Observing distribution in processes: Static and dynamic localities. International Journal of Foundations of Computer Science 6(4), 353–393 (1995)CrossRefMATHGoogle Scholar
  15. 15.
    Degano, P., Priami, C.: Non interleaving semantics for mobile processes. In: Fülöp, Z., Gecseg, F. (eds.) ICALP 1995. LNCS, vol. 944, pp. 660–667. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  16. 16.
    Boreale, M., Sangiorgi, D.: A fully abstract semantics for causality in the π-calculus. Acta Informatica 35 (1998)Google Scholar
  17. 17.
    Winskel, G.: Event structure semantics for CCS and related languages. In: Nielsen, M., Schmidt, E.M. (eds.) ICALP 1982. LNCS, vol. 140, pp. 561–576. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  18. 18.
    Marek, A.: Bednarczyk. Hereditary history preserving bisimulations or what is the power of the future perfect in program logics. ICS PAS Report (April 1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Vincent Danos
    • 1
  • Jean Krivine
    • 2
  1. 1.Université Paris 7 & CNRSFrance
  2. 2.INRIA RocquencourtFrance

Personalised recommendations