The Minimum Weight Triangulation Problem with Few Inner Points

  • Michael Hoffmann
  • Yoshio Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3162)


We propose to look at the computational complexity of 2-dimensional geometric optimization problems on a finite point set with respect to the number of inner points (that is, points in the interior of the convex hull). As a case study, we consider the minimum weight triangulation problem. Finding a minimum weight triangulation for a set of n points in the plane is not known to be NP-hard nor solvable in polynomial time, but when the points are in convex position, the problem can be solved in O(n 3) time by dynamic programming. We extend the dynamic programming approach to the general problem and describe an exact algorithm which runs in O(6 k n 5log n) time where n is the total number of input points and k is the number of inner points. If k is taken as a parameter, this is a fixed-parameter algorithm. It also shows that the problem can be solved in polynomial time if k=O(log n). In fact, the algorithm works not only for convex polygons, but also for simple polygons with k interior points.


Polynomial Time Input Point Simple Polygon Empty Circle Boundary Polygon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O.: The path of a triangulation. In: Proc. 15th SoCG, pp. 14–23 (1999)Google Scholar
  2. 2.
    Aichholzer, O., Rote, G., Speckmann, B., Streinu, I.: The zigzag path of a pseudo-triangulation. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 377–388. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Anagnostou, E., Corneil, D.: Polynomial-time instances of the minimum weight triangulation problem. Comput. Geom. 3, 247–259 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bose, P., Devroye, L., Evans, W.: Diamonds are not a minimum weight triangulation’s best friend. Internat. J. Comput. Geom. Appl. 12, 445–453 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Cheng, S.-W., Xu, Y.-F.: On β-skeleton as a subgraph of the minimum weight triangulation. Theor. Comput. Sci. 262, 459–471 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Deineko, V.G., Hoffmann, M., Okamoto, Y., Woeginger, G.J.: The traveling salesman problem with few inner points. In: Chwa, K.-Y., Munro, J.I.J. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 268–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)Google Scholar
  8. 8.
    Garey, M., Johnson, D.: Computers and Intractability. W.H. Freeman & Company, New York (1979)zbMATHGoogle Scholar
  9. 9.
    Gilbert, P.D.: New results in planar triangulations. Master Thesis, University of Illinois, Urbana (1979)Google Scholar
  10. 10.
    Hu, S.: A constant-factor approximation for maximum weight triangulation. In: Proc. 15th CCCG, pp. 150–154 (2003)Google Scholar
  11. 11.
    Kyoda, Y., Imai, K., Takeuchi, F., Tajima, A.: A branch-and-cut approach for minimum weight triangulation. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350, pp. 384–393. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  12. 12.
    Klincsek, G.: Minimal triangulations of polygonal domains. Annals Discrete Math. 9, 121–123 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Levcopoulos, C., Krznaric, D.: Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algor. 27, 303–338 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Niedermeier, R.: Invitation to fixed-parameter algorithms. Habilitation Thesis, Universität Tübingen (2002)Google Scholar
  15. 15.
    Shamos, M.I., Hoey, D.: Geometric intersection problems. In: Proc. 17th FOCS, pp. 208–215 (1976)Google Scholar
  16. 16.
    Wang, C.A., Chin, F.Y., Yang, B.T.: Maximum weight triangulation and graph drawing. Inform. Proccess. Lett. 70, 17–22 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wang, C.A., Yang, B.: A lower bound for β-skeleton belonging to minimum weight triangulations. Comput. Geom. 19, 35–46 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Hoffmann
    • 1
  • Yoshio Okamoto
    • 1
  1. 1.Institute of Theoretical Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations