Advertisement

Shape Matching for Robot Mapping

  • Diedrich Wolter
  • Longin J. Latecki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3157)

Abstract

We present a novel geometric model for robot mapping based on shape. Shape similarity measure and matching techniques originating from computer vision are specially redesigned for matching range scans. The fundamental geometric representation is a structural one, polygonal lines are ordered according to the cyclic order of visibility. This approach is an improvement of the underlying geometric models of today’s SLAM implementations, where shape matching allows us to disregard pose estimations. The object-centered approach allows for compact representations that are well-suited to bridge the gap from metric information needed in path planning to more abstract, i.e. topological or qualitative spatial knowledge desired in complex navigational tasks.

Keywords

Shape Information Shape Match Polygonal Line Occupancy Grid Basic Similarity Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arkin, M., Chew, L., Huttenlocher, D., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (1991)Google Scholar
  2. 2.
    Basri, R., Costa, L., Geiger, D., Jacobs, D.: Determining the similarity of deformable shapes. Vision Research 38 (1998)Google Scholar
  3. 3.
    Cox, I.J.: Blanche: Position estimation for an autonomous robot vehicle. In: Cox, I.J., Wilfong, G. (eds.) Autonomous Robot Vehicles, pp. 221–228. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Dissanayake, G., Newman, P., Clark, S., Durrant-Whyte, H., Csorba, M.: A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions of Robotics and Automation (2001)Google Scholar
  5. 5.
    Elfes, A.: Occupancy Grids: A Probabilistic Framework for Robot Perception and Navigation. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University (1989)Google Scholar
  6. 6.
    Hähnel, D., Schulz, D., Burgard, W.: Map building with mobile robots in populated environments. In: Proceedings of International Conference on Intelligent Robots and Systems, IROS 2002 (2002)Google Scholar
  7. 7.
    Latecki, L.J., Lakämper, R.: Convexity rule for shape decomposition based on discrete contour evolution. Computer Vision and Image Understanding 73 (1999)Google Scholar
  8. 8.
    Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Analysis and Machine Intelligence 22(10) (2000)Google Scholar
  9. 9.
    Latecki, L.J., Lakämper, R., Wolter, D.: Shape similarity and visual parts. In: Proceedings of the 11th International Conference on Disrecte Geometry for Computer Imagery (DGCI), Naples, Italy (November 2003)Google Scholar
  10. 10.
    Lu, F., Milios, E.: Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems (1997)Google Scholar
  11. 11.
    Röfer, T.: Using histogram correlation to create consistent laser scan maps. In: Proceedings of the IEEE International Conference on Robotics Systems, IROS 2002 (2002)Google Scholar
  12. 12.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1), 116–125 (2003)CrossRefGoogle Scholar
  13. 13.
    Siddiqi, K., Shokoufandeh, A., Dickinson, S.J., Zucker, S.W.: Shock graphs and shape matching. International Journal of Computer Vision 35(1), 13–32 (1999)CrossRefGoogle Scholar
  14. 14.
    Thrun, S.: Learning metric-topological maps for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1998)zbMATHCrossRefGoogle Scholar
  15. 15.
    Thrun, S.: Probabilistic algorithms in robotics. AI Magazine 21(4), 93–109 (2000)Google Scholar
  16. 16.
    Thrun, S.: Robotic mapping: A survey. In: Lakemeyer, G., Nebel, B. (eds.) Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Diedrich Wolter
    • 1
  • Longin J. Latecki
    • 2
  1. 1.FB 3 – Cognitive SystemsUniversity of BremenBremenGermany
  2. 2.CIS DepartmentTemple UniversityPhiladelphiaUSA

Personalised recommendations