Long Modular Multiplication for Cryptographic Applications

  • Laszlo Hars
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3156)


A digit-serial, multiplier-accumulator based cryptographic co-processor architecture is proposed, similar to fix-point DSP’s with enhancements, supporting long modular arithmetic and general computations. Several new “column-sum” variants of popular quadratic time modular multiplication algorithms are presented (Montgomery and interleaved division-reduction with or without Quisquater scaling), which are faster than the traditional implementations, need no or very little memory beyond the operand storage and perform squaring about twice faster than general multiplications or modular reductions. They provide similar advantages in software for general purpose CPU’s.


Computer arithmetic cryptography modular multiplication Modular reduction Montgomery multiplication Quisquater multiplication optimization multiply-accumulate architecture reciprocal 


  1. 1.
    ALTERA Literature: Stratix II Devices, http://www.altera.com/literature/lit-stx2.jsp
  2. 2.
    Barrett, P.D.: Implementing the Rivest Shamir Adleman public key encryption algorithm on standard digital signal processor. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 311–323. Springer, Heidelberg (1987)Google Scholar
  3. 3.
    Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of three modular reduction functions. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 175–186. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Brickell, E.F.: A Survey of Hardware Implementations of RSA. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 368–370. Springer, Heidelberg (1990)Google Scholar
  5. 5.
    Dhem, J.-F., Quisquater, J.-J.: Recent results on modular multiplications for smart cards. In: Schneier, B., Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 350–366. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    GNU Multiple Precision Arithmetic Library, http://www.swox.com/gmp/gmp-man-4.1.2.pdf
  7. 7.
    Hensel, K.: Theorie der algebraische Zahlen. Leipzig (1908) Google Scholar
  8. 8.
    Jedwab, J., Mitchell, C.J.: Minimum weight modified signed-digit representations and fast exponentiation. Electronics Letters 25(17), 1171–1172 (1989)MATHCrossRefGoogle Scholar
  9. 9.
    Knuth, D.E.: The Art of Computer Programming. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1981) Algorithm 4.3.3RGoogle Scholar
  10. 10.
    Krandick, W., Johnson, J.R.: Efficient Multiprecision Floating Point Multiplication with Exact Rounding, Tech. Rep. 93-76, RISC-Linz, Johannes Kepler University, Linz, Austria (1993)Google Scholar
  11. 11.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)CrossRefGoogle Scholar
  12. 12.
    Montgomery, P.L.: Modular Multiplication without Trial Division. Mathematics of Computation 44(170), 519–521 (1985)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Quisquater, J.-J.: Presentation at the rump session of Eurocrypt 1990Google Scholar
  14. 14.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
  16. 16.
    Walter, C.D.: Faster modular multiplication by operand scaling. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 313–323. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Hars, L.: manuscript (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Laszlo Hars
    • 1
  1. 1.Seagate ResearchPittsburghUSA

Personalised recommendations