Quantifying the Ocean’s CO2 Budget with a CoHeL-IBR System

  • Juan M. Corchado
  • Jim Aiken
  • Emilio S. Corchado
  • Nathalie Lefevre
  • Tim Smyth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3155)


By improving accuracy in the quantification of the ocean’s CO2 budget, a more precise estimation can be made of the terrestrial fraction of global CO2 budget and its subsequent effect on climate change. First steps have been taken towards this from an environmental and economic point of view, by using an instance based reasoning system, which incorporates a novel clustering and retrieval method – a Cooperative Maximum Likelihood Hebbian Learning model (CoHeL). This paper reviews the problems of measuring the ocean’s CO2 budget and presents the CoHeL model developed and outlines the IBR system developed to resolve the problem.


Sparse Representation Case Base Reasoning Projection Pursuit Hebbian Learn Artificial Intelligence Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont, MA (1995)Google Scholar
  2. 2.
    Charles, D., Fyfe, C.: Modeling Multiple Cause Structure Using Rectification Constraints. Network: Computation in Neural Systems 9, 167–182 (1998)zbMATHCrossRefGoogle Scholar
  3. 3.
    Corchado, E., Fyfe, C.: Orientation Selection Using Maximum Likelihood Hebbian Learning. International Journal of Knowledge-Based Intelligent Engineering Systems 7(2) (April 2003)Google Scholar
  4. 4.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian Learning for Exploratory Projection Pursuit, Data mining and Knowledge Discovery. Kluwer Academic Publishing, Dordrecht (2004) (in press)Google Scholar
  5. 5.
    Corchado, J.M., Lees, B.: A hybrid case-based model for forecasting. Applied Artificial Intelligence: An International Journal 15(2), 105–127 (2001)CrossRefGoogle Scholar
  6. 6.
    Corchado, J.M., Corchado, E.S., Aiken, J., Fyfe, C., Fdez-Riverola, F., Glez-Bedia, M.: Maximum Likelihood Hebbian Learning Based Retrieval Method for CBR Systems. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Finnegan, W.G., Pitter, R.L., Young, L.G.: Atmospheric Environment A25, 2531–2534 (1991)Google Scholar
  8. 8.
    Freedman, J., Tukey, J.: A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Transaction on Computers (23), 881–890 (1974)Google Scholar
  9. 9.
    Fyfe, C., Corchado, E.S.: Maximum Likelihood Hebbian Rules. In: European Symposium on Artificial Neural Networks (2002)Google Scholar
  10. 10.
    Fyfe, C., MacDonald, D.: ε-Insensitive Hebbian learning. Neuro Computing (2002) Google Scholar
  11. 11.
    Lefevre, N., Aiken, J., Rutllant, J., Daneri, G., Lavender, S., Smyth, T.: Observations of pCO2 in the coastal upwelling off Chile: Sapatial and temporal extrapolation using satellite data. Journal of Geophysical research 107 (2002)Google Scholar
  12. 12.
    Oja, E.: Neural Networks, Principal Components and Subspaces. International Journal of Neural Systems 1, 61–68 (1989)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pal, S.K., Dillon, T.S., Yeung, D.S.: Soft Computing in Case-based Reasoning. Springer, London (2000)Google Scholar
  14. 14.
    Sarmiento, J.L., Dender, M.: Carbon biogeochemistry and climate change. Photosynthesis Research 39, 209–234 (1994)CrossRefGoogle Scholar
  15. 15.
    Seung, H.S., Socci, N.D., Lee, D.: The Rectified Gaussian Distribution. In: Advances in Neural Information Processing Systems, vol. 10 (1998)Google Scholar
  16. 16.
    Smola, A.J., Scholkopf, B.: A Tutorial on Support Vector Regression. Technical Report NC2-TR-1998-030, NeuroCOLT2 Technical Report Series (1998)Google Scholar
  17. 17.
    Takahashi, T., Olafsson, J., Goddard, J.G., Chipman, D.W., Sutherland, S.C.: Seasonal Variation of CO2 and nutrients in the High-latitude surface oceans: a comparative study. Global biochemical Cycles 7(4), 843–878 (1993)CrossRefGoogle Scholar
  18. 18.
    Watson, I., Marir, F.: Case-Based Reasoning: A Review. Cambridge University Press, Cambridge (1994) The knowledge Engineering Review, vol. 9(3)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Juan M. Corchado
    • 1
  • Jim Aiken
    • 2
  • Emilio S. Corchado
    • 3
  • Nathalie Lefevre
    • 4
  • Tim Smyth
    • 2
  1. 1.Departamento Informática y AutomáticaUniversidad de SalamancaSalamancaSpain
  2. 2.Centre for Air-Sea Interactions and fluxesPlymouth Marine LaboratoryPlymouthUK
  3. 3.Departamento de Ingeniería Civil, Escuela Politécnica SuperiorUniversidad de BurgosBurgosSpain
  4. 4.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations