An Algebraic Generalization of ω-Regular Languages

  • Zoltán Ésik
  • Werner Kuich
Conference paper

DOI: 10.1007/978-3-540-28629-5_50

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)
Cite this paper as:
Ésik Z., Kuich W. (2004) An Algebraic Generalization of ω-Regular Languages. In: Fiala J., Koubek V., Kratochvíl J. (eds) Mathematical Foundations of Computer Science 2004. MFCS 2004. Lecture Notes in Computer Science, vol 3153. Springer, Berlin, Heidelberg

Abstract

This paper continues the algebraic theory of Ésik, Kuich [9] on semiring-semimodule pairs and quemirings that is applicable to languages that contain finite and infinite words. The main advantage is that we get rid of the idempotency assumption for the semimodule needed at several places in Ésik, Kuich [9].

Additionally, we consider linear systems as a generalization of rightlinear grammars. Moreover, we develop an algorithm that constructs, for a given finite automaton, an equivalent one without ε-moves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Zoltán Ésik
    • 1
  • Werner Kuich
    • 2
  1. 1.University of Szeged 
  2. 2.Technische Universität Wien 

Personalised recommendations