Advertisement

The Price of Anarchy for Polynomial Social Cost

  • Martin Gairing
  • Thomas Lücking
  • Marios Mavronicolas
  • Burkhard Monien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)

Abstract

In this work, we consider an interesting variant of the well-studied KP model [18] for selfish routing that reflects some influence from the much older Wardrop model [31]. In the new model, user traffics are still unsplittable, while social cost is now the expectation of the sum, over all links, of a certain polynomial evaluated at the total latency incurred by all users choosing the link; we call it polynomial social cost. The polynomials that we consider have non-negative coefficients. We are interested in evaluating Nash equilibria in this model, and we use the Price of Anarchy as our evaluation measure. We prove the Fully Mixed Nash Equilibrium Conjecture for identical users and two links, and establish an approximate version of the conjecture for arbitrary many links. Moreover, we give upper bounds on the Price of Anarchy.

Keywords

Nash Equilibrium Social Cost Mixed Strategy Pure Strategy Identical User 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aigner, M.: Combinatorial Theory. Springer, Heidelberg (1979)zbMATHGoogle Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Tardos, E., Wexler, T.: Near-optimal network design with selfish agents. In: Proc. of the 35th Annual ACM Symp. on Theory of Computing, pp. 511–520 (2003)Google Scholar
  3. 3.
    Awerbuch, B., Azar, Y., Richter, Y., Tsur, D.: Tradeoffs in worst-case equilibria. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 41–52. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Beckmann, M.J.: On the theory of traffic flow in networks. Traffic Quart 21, 109–116 (1967)Google Scholar
  5. 5.
    Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)Google Scholar
  6. 6.
    Braess, D.: Über ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Czumaj, A.: Selfish routing on the internet. In: Leung, J. (ed.) To appear as a chapter in Handbook of Scheduling: Algorithms, Models, and Performance Analysis, CRC Press, Boca Raton (2004)Google Scholar
  8. 8.
    Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms. In: Proc. of the 34th Annual ACM Symp. on Theory of Computing, pp. 287–296 (2002)Google Scholar
  9. 9.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proc. of the 13th Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 413–420 (2002)Google Scholar
  10. 10.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: Proc. of the 22nd Annual Symp. on Principles of Distributed Computing, pp. 347–351 (2003)Google Scholar
  11. 11.
    Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Selfish routing in non-cooperative networks: A survey. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 21–45. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash equilibria in discrete routing games with convex latency functions. In: Proc. of the 31st Int. Colloq. on Automata, Languages, and Programming (2004) (to appear)Google Scholar
  15. 15.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Spirakis, P.: Extreme nash equilibria. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 1–20. Springer, Heidelberg (2003) Accepted to Theoretical Computer ScienceGoogle Scholar
  16. 16.
    Koutsoupias, E.: Selfish task allocation. Bulletin of the EATCS 81, 79–88 (2003)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. Theory of Computing Systems 36(6), 683–693 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Kumar, V.S.A., Marathe, M.V.: Improved results for stackelberg scheduling strategies. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 776–787. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A new model for selfish routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which is the Worst-case Nash Equilibrium? In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 551–561. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: Proc. of the 33rd Annual ACM Symp. on Theory of Computing, pp. 510–519 (2001)Google Scholar
  23. 23.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and economic behavior 13, 111–124 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Nash, J.: Non-cooperative games. Annals of Mathematics 54(2), 286–295 (1951)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. Int. Journal of Game Theory 2, 65–67 (1973)zbMATHCrossRefGoogle Scholar
  26. 26.
    Roughgarden, T.: Designing networks for selfish users is hard. In: Proc. of the 42nd Annual Symp. on Foundations of Computer Science, pp. 472–481 (2001)Google Scholar
  27. 27.
    Roughgarden, T.: Stackelberg scheduling strategies. In: Proc. of the 33rd Annual ACM Symp. on the Theory of Computing, pp. 104–113 (2001)Google Scholar
  28. 28.
    Roughgarden, T.: The price of anarchy is independent of the network topology. In: Proc. of the 34th Annual ACM Symp. on the Theory of Computing, pp. 428–437 (2002)Google Scholar
  29. 29.
    Roughgarden, T., Tardos, E.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar
  31. 31.
    Wardrop, J.G.: Some theoretical aspects of road traffic research. In: Proc. of the Institute of Civil Engineers, Pt. II, vol. 1, pp. 325–378 (1956)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Martin Gairing
    • 1
  • Thomas Lücking
    • 1
  • Marios Mavronicolas
    • 2
  • Burkhard Monien
    • 1
  1. 1.Faculty of Computer Science, Electrical Engineering and MathematicsUniversity of PaderbornPaderbornGermany
  2. 2.Department of Computer ScienceUniversity of CyprusNicosiaCyprus

Personalised recommendations