We introduce a natural class of cellular automata characterised by a property of the local transition law without any assumption on the states set. We investigate some algebraic properties of the class and show that it contains intrinsically universal cellular automata. In addition we show that Rice’s theorem for limit sets is no longer true for that class, although infinitely many properties of limit sets are still undecidable.


Cellular Automaton Neighbourhood Word Uniform Extension Automaton Dynamic Global Dynamical Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, J., Čulik II., K.: A simple universal cellular automaton and its one-way and totalistic version. Complex Systems 1, 1–16 (1987)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Banks, E.R.: Universality in cellular automata. In: Eleventh Annual Symposium on Switching and Automata Theory, Santa Monica, California, IEEE, Los Alamitos (1970)Google Scholar
  3. 3.
    Čulik II, K., Pachl, J., Yu, S.: On the limit sets of cellular automata. SIAM Journal on Computing 18(4), 831–842 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Fagnani, F., Margara, L.: Expansivity, permutivity, and chaos for cellular automata. Theory of Computing Systems 31(6), 663–677 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Goles, E., Olivos, J.: The convergence of symmetric threshold automata. Information and Control 51, 98–104 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hedlund, G.A.: Endomorphisms and Automorphisms of the Shift Dynamical Systems. Mathematical Systems Theory 3(4), 320–375 (1969)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kari, J.: The Nilpotency Problem of One-dimensional Cellular Automata. SIAM Journal on Computing 21, 571–586 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kari, J.: Rice’s theorem for the limit sets of cellular automata. Theoretical Computer Science 127, 229–254 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kůrka, P.: Languages, equicontinuity and attractors in cellular automata. Ergodic Theory and Dynamical Systems 17, 417–433 (1997)Google Scholar
  10. 10.
    Martin, O., Odlyzko, A., Wolfram, S.: Algebraic properties of cellular automata. Communications in Mathematical Physics 93, 219 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mazoyer, J., Rapaport, I.: Inducing an Order on Cellular Automata by a Grouping Operation. In: Symposium on Theoretical Aspects of Computer Science. LNCS, Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Ollinger, N.: Toward an algorithmic classification of cellular automata dynamics. Reasearch report 2001-10, Laboratoire de l’Informatique du Parallèlisme (January 2001) Google Scholar
  13. 13.
    Ollinger, N.: Automates Cellulaires : structures. PhD thesis, École Normale Supérieure de Lyon (Décembre 2002) Google Scholar
  14. 14.
    Ollinger, N.: The quest for small universal cellular automata. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 318–330. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Richardson, D.: Tesselations with local tranformations. Journal of Computer and System Sciences 5, 373–388 (1972)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Guillaume Theyssier
    • 1
  1. 1.LIP UMR CNRS, ENS LyonINRIA, Univ. Claude Bernard Lyon 1, École Normale Supérieure de LyonLYONFRANCE

Personalised recommendations