All Superlinear Inverse Schemes Are coNP-Hard

  • Edith Hemaspaandra
  • Lane A. Hemaspaandra
  • Harald Hempel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3153)

Abstract

How hard is it to invert NP-problems? We show that all superlinearly certified inverses of NP problems are coNP-hard. As part of our work we develop a novel proof technique that builds diagonalizations against certificates directly into a circuit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V., Wagner, K., Wechsung, G.: The boolean hierarchy I: Structural properties. SIAM Journal on Computing 17(6), 1232–1252 (1988)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cai, J., Gundermann, T., Hartmanis, J., Hemachandra, L., Sewelson, V., Wagner, K., Wechsung, G.: The boolean hierarchy II: Applications. SIAM Journal on Computing 18(1), 95–111 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, H.: Inverse NP problems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 338–347. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Hemaspaandra, L., Ogihara, M.: The Complexity Theory Companion. Springer, Heidelberg (2002)MATHGoogle Scholar
  5. 5.
    Hemachandra, L., Rudich, S.: On the complexity of ranking. Journal of Computer and System Sciences 41(2), 251–271 (1990)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  7. 7.
    Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, October 1972, pp. 125–129 (1972)Google Scholar
  8. 8.
    Papadimitriou, C.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  9. 9.
    Papadimitriou, C., Yannakakis, M.: The complexity of facets (and some facets of complexity). Journal of Computer and System Sciences 28(2), 244–259 (1984)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Rogers Jr., H.: The Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York (1967)Google Scholar
  11. 11.
    Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3(1), 1–22 (1976)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3(1), 23–33 (1976)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Edith Hemaspaandra
    • 1
  • Lane A. Hemaspaandra
    • 2
  • Harald Hempel
    • 3
  1. 1.Department of Computer ScienceRochester Institute of TechnologyRochesterUSA
  2. 2.Department of Computer ScienceUniversity of RochesterRochesterUSA
  3. 3.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations