Advertisement

Round-Optimal Secure Two-Party Computation

  • Jonathan Katz
  • Rafail Ostrovsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3152)

Abstract

We consider the central cryptographic task of secure two-party computation: two parties wish to compute some function of their private inputs (each receiving possibly different outputs) where security should hold with respect to arbitrarily-malicious behavior of either of the participants. Despite extensive research in this area, the exact round-complexity of this fundamental problem (i.e., the number of rounds required to compute an arbitrary poly-time functionality) was not previously known.

Here, we establish the exact round complexity of secure two-party computation with respect to black-box proofs of security. We first show a lower bound establishing (unconditionally) that four rounds are not sufficient to securely compute the coin-tossing functionality for any super-logarithmic number of coins; this rules out 4-round protocols for other natural functionalities as well. Next, we construct protocols for securely computing any (randomized) functionality using only five rounds. Our protocols may be based either on certified trapdoor permutations or homomorphic encryption schemes satisfying certain additional properties. The former assumption is implied by, e.g., the RSA assumption for large public exponents, while the latter is implied by, e.g., the DDH assumption. Finally, we show how our protocols may be modified – without increasing their round complexity and without requiring erasures – to tolerate an adaptive malicious adversary.

Keywords

Proof System Commitment Scheme Oblivious Transfer Secure Multiparty Computation Homomorphic Encryption Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barak, B.: How to Go Beyond the Black-Box Simulation Barrier. In: 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 106–115. IEEE, Los Alamitos (2001)Google Scholar
  2. 2.
    Barak, B.: Constant-Round Coin-Tossing with a Man-in-the-Middle or Realizing the Shared Random String Model. In: 43rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 345–355. IEEE, Los Alamitos (2002)Google Scholar
  3. 3.
    Barak, B., Lindell, Y.: Strict Polynomial Time in Simulation and Extraction. In: 34th ACM Symposium on Theory of Computing (STOC), pp. 484–493. ACM, New York (2002)Google Scholar
  4. 4.
    Bar-Ilan, J., Beaver, D.: Non-Cryptographic Fault-Tolerant Computing in Constant Number of Rounds of Interaction. In: Principles of Distributed Computing, pp. 201–209. ACM, New York (1989)Google Scholar
  5. 5.
    Beaver, D., Micali, S., Rogaway, P.: The Round Complexity of Secure Protocols. In: 22nd ACM Symposium on Theory of Computing (STOC), pp. 503–513. ACM, New York (1990)Google Scholar
  6. 6.
    Bellare, M., Micali, S., Ostrovsky, R.: Perfect Zero-Knowledge in Constant Rounds STOC, pp. 482–493 (1990)Google Scholar
  7. 7.
    Bellare, M., Micali, S., Ostrovsky, R.: The (True) Complexity of Statistical Zero Knowledge STOC, pp. 494–502 (1990)Google Scholar
  8. 8.
    Blum, M.: Coin Flipping by Phone. In: IEEE COMPCOM, pp. 133–137 (1982)Google Scholar
  9. 9.
    Canetti, R.: Security and Composition of Multi-Party Cryptographic Protocols. J. Cryptology 13(1), 143–202 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC 2002, pp. 494–503 (2002)Google Scholar
  11. 11.
    Canetti, R., Kushilevitz, E., Ostrovsky, R., Rosen, A.: Randomness versus Fault- Tolerance. J. Cryptology 13(1), 107–142 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively-Secure Multiparty Computation. In: 28th ACM Symposium on Theory of Computing (STOC), pp. 639–648. ACM, New York (1996)Google Scholar
  13. 13.
    Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Concurrent Zero-Knowledge Requires _ Ω (log n) Rounds. In: 33rd ACM Symp. on Theory of Comp (STOC), pp. 570–579. ACM, New York (2001)Google Scholar
  14. 14.
    Cramer, R., Damgård, I.: Secure Distributed Linear Algebra in a Constant Number of Rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Di Crescenzo, G., Ostrovsky, R.: On Concurrent Zero-Knowledge with Preprocessing. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 485–502. Springer, Heidelberg (1999)Google Scholar
  16. 16.
    Damgård, I., Nielsen, J.B.: Improved Non-Committing Encryption Schemes. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    De Santis, A., DiCrescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust Noninteractive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Feige, U.: Alternative Models for Zero Knowledge Interactive Proofs. PhD thesis, Weizmann Institute of Science (1990)Google Scholar
  19. 19.
    Feige, U., Shamir, A.: Zero Knowledge Proofs of Knowledge in Two Rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)Google Scholar
  20. 20.
    Feige, U., Shamir, A.: Witness Indistinguishability and Witness Hiding Protocols. In: 22nd ACM Symposium on Theory of Computing (STOC), pp. 416–426. ACM, New York (1990)Google Scholar
  21. 21.
    Fitzi, M., Garay, J., Maurer, U., Ostrovsky, R.: Minimal Complete Primitives for Secure Multi-party Computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 80–100. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The Round Complexity of Verifiable Secret Sharing and Secure Multicast. In: 33rd ACM Symposium on Theory of Computing (STOC), pp. 580–589. ACM, New York (2001)Google Scholar
  23. 23.
    Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: On 2-Round Secure Multiparty Computation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 178–193. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Goldreich, O.: Foundations of Cryptography. Basic Tools, vol. 1. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Goldreich, O.: Draft of a Chapter on Cryptographic Protocols (June 2003), Available at http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
  26. 26.
    Goldreich, O.: Draft of an Appendix Regarding Corrections and Additions (June 2003), Available at http://www.wisdom.weizmann.ac.il/~oded/foc-vol2.html
  27. 27.
    Goldreich, O., Kahan, A.: How to Construct Constant-Round Zero-Knowledge Proof Systems for NP. J. Cryptology 9(3), 167–190 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Goldreich, O., Krawczyk, H.: On the Composition of Zero-Knowledge Proof Systems. SIAM J. Computing 25(1), 169–192 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game: a Completeness Theorem for Protocols with Honest Majority. In: 19th ACM Symposium on Theory of Computing (STOC), pp. 218–229. ACM, New York (1987)Google Scholar
  30. 30.
    Impagliazzo, R., Rudich, S.: Limits on the Provable Consequences of One-Way Permutations. In: 21st ACM Symposium on Theory of Computing (STOC), pp. 44–61. ACM, New York (1989)Google Scholar
  31. 31.
    Kilian, J., Kushilevitz, E., Micali, S., Ostrovsky, R.: Reducibility and Completeness in Private Computations. SIAM J. Comput. 29(4), 1189–1208 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Ishai, Y., Kushilevitz, E.: Randomizing Polynomials: A New Representation with Applications to Round-Efficient Secure Computation. In: 41st IEEE Symposium on Foundations of Computer Science (FOCS), pp. 294–304. IEEE, Los Alamitos (2000)Google Scholar
  33. 33.
    Katz, J., Ostrovsky, R., Smith, A.: Round Efficiency of Multi-Party Computation with a Dishonest Majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Kushilevitz, E., Ostrovsky, R., Rosén, A.: Amortizing Randomness in Private Multiparty Computations. SIAM J. Discrete Math. 16(4), 533–544 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Kilian, J., Petrank, E.: Concurrent and Resettable Zero-Knowledge in Polylogarithmic Rounds. In: 31st ACM Symposium on Theory of Computing (STOC), pp. 560–569. ACM, New York (2001)Google Scholar
  36. 36.
    Lapidot, D., Shamir, A.: Publicly-Verifiable Non-Interactive Zero-Knowledge Proofs. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 353–365. Springer, Heidelberg (1991)Google Scholar
  37. 37.
    Lindell, Y.: Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  38. 38.
    Lindell, Y.: Personal communication (2001)Google Scholar
  39. 39.
    Micali, S., Rogaway, P.: Secure Computation. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 392–404. Springer, Heidelberg (1992)Google Scholar
  40. 40.
    Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect Zero-Knowledge Arguments for NP Can Be Based on General Complexity Assumptions. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 196–214. Springer, Heidelberg (1993)Google Scholar
  41. 41.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent Zero Knowledge with Logarithmic Round-Complexity. In: 43rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 366–375. IEEE, Los Alamitos (2002)Google Scholar
  42. 42.
    Richardson, R., Kilian, J.: On the Concurrent Composition of Zero-Knowledge Proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)Google Scholar
  43. 43.
    Yao, A.C.: How to Generate and Exchange Secrets. In: 27th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 162–167. IEEE, Los Alamitos (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jonathan Katz
    • 1
  • Rafail Ostrovsky
    • 2
  1. 1.Dept. of Computer ScienceUniversity of Maryland 
  2. 2.Dept. of Computer ScienceU.C.L.A. 

Personalised recommendations