Novel Signaling Pathways in Breast Cancer

  • Hui-Wen Lo
  • Shao-Chun Wang
  • Mien-Chie Hung


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baselga, J., Norton, L. Focus on breast cancer. Cancer Cell 1, 319–22 (2002).PubMedCrossRefGoogle Scholar
  2. 2.
    Zhou, B. P., Hung, M. C. Dysregulation of cellular signaling by HER2/neu in breast cancer. Semin Oncol 30, 38–48 (2003).PubMedCrossRefGoogle Scholar
  3. 3.
    Wang, S. C., Zhang, L., Hortobagyi, G. N., Hung, M. C. Targeting HER2: recent developments and future directions for breast cancer patients. Semin Oncol 28, 21–9 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    Craven, R. J., Lightfoot, H., Cance, W. G. A decade of tyrosine kinases: from gene discovery to therapeutics. Surg Oncol 12, 39–49 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    Bacus, S. S., Chin, D., Yarden, Y., Zelnick, C. R., Stern, D. F. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors. Am J Pathol 148, 549–58 (1996).PubMedGoogle Scholar
  6. 6.
    Cohen, S., Taylor, J. M. Epidermal growth factor: chemical and biological characterization. Recent Prog Horm Res 30, 533–50 (1974).PubMedGoogle Scholar
  7. 7.
    Cohen, S., Fava, R. A., Sawyer, S. T. Purification and characterization of epidermal growth factor receptor/protein kinase from normal mouse liver. Proc Natl Acad Sci U S A 79, 6237–41 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    Cohen, S., Ushiro, H., Stoscheck, C., Chinkers, M. A native 170,000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 257, 1523–31 (1982).PubMedGoogle Scholar
  9. 9.
    Haigler, H. T., McKanna, J. A., Cohen, S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol 81, 382–95 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    Carpenter, G. ErbB-4: mechanism of action and biology. Exp Cell Res 284, 66–77 (2003).PubMedCrossRefGoogle Scholar
  11. 11.
    Anderson, D. et al. Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 250, 979–82 (1990).PubMedCrossRefGoogle Scholar
  12. 12.
    Navolanic, P. M., Steelman, L. S., McCubrey, J. A. EGFR family signaling and its association with breast cancer development and resistance to chemotherapy (Review). Int J Oncol 22, 237–52 (2003).PubMedGoogle Scholar
  13. 13.
    Yang, Y. et al. Sequential requirement of hepatocyte growth factor and neuregulin in the morphogenesis and differentiation of the mammary gland. J Cell Biol 131, 215–26 (1995).PubMedCrossRefGoogle Scholar
  14. 14.
    Sebastian, J. et al. Activation and function of the epidermal growth factor receptor and erbB-2 during mammary gland morphogenesis. Cell Growth Differ 9, 777–85 (1998).PubMedGoogle Scholar
  15. 15.
    Schroeder, J. A., Lee, D. C. Dynamic expression and activation of ERBB receptors in the developing mouse mammary gland. Cell Growth Differ 9, 451–64 (1998).PubMedGoogle Scholar
  16. 16.
    Xie, W., Paterson, A. J., Chin, E., Nabell, L. M., Kudlow, J. E. Targeted expression of a dominant negative epidermal growth factor receptor in the mammary gland of transgenic mice inhibits pubertal mammary duct development. Mol Endocrinol 11, 1766–81 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    Lemoine, N. R. et al. Expression of the ERBB3 gene product in breast cancer. Br J Cancer 66, 1116–21 (1992).PubMedGoogle Scholar
  18. 18.
    Travis, A. et al. C-erbB-3 in human breast carcinoma: expression and relation to prognosis and established prognostic indicators. Br J Cancer 74, 229–33 (1996).PubMedGoogle Scholar
  19. 19.
    Bieche, I. et al. Prognostic value of ERBB family mRNA expression in breast carcinomas. Int J Cancer 106, 758–65 (2003).PubMedCrossRefGoogle Scholar
  20. 20.
    Vogt, U. et al. Amplification of erbB-4 oncogene occurs less frequently than that of erbB-2 in primary human breast cancer. Gene 223, 375–80 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    Kew, T. Y. et al. c-erbB-4 protein expression in human breast cancer. Br J Cancer 82, 1163–70 (2000).PubMedCrossRefGoogle Scholar
  22. 22.
    Knowlden, J. M. et al. c-erbB3 and c-erbB4 expression is a feature of the endocrine responsive phenotype in clinical breast cancer. Oncogene 17, 1949–57 (1998).PubMedCrossRefGoogle Scholar
  23. 23.
    Petrocelli, T., Slingerland, J. M. PTEN deficiency: a role in mammary carcinogenesis. Breast Cancer Res 3, 356–60 (2001).PubMedCrossRefGoogle Scholar
  24. 24.
    Shi, W. et al. Dysregulated PTEN-PKB and negative receptor status in human breast cancer. Int J Cancer 104, 195–203 (2003).PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou, B. P. et al. Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3, 245–52 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3, 973–82 (2001).PubMedCrossRefGoogle Scholar
  27. 27.
    Li, Y., Dowbenko, D., Lasky, L. A. AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277, 11352–61 (2002).PubMedCrossRefGoogle Scholar
  28. 28.
    El-Deiry, W. S. Akt takes centre stage in cell-cycle deregulation. Nat Cell Biol 3, E71–3 (2001).PubMedCrossRefGoogle Scholar
  29. 29.
    Rossig, L. et al. Akt-dependent phosphorylation of p21(Cip1) regulates PCNA binding and proliferation of endothelial cells. Mol Cell Biol 21, 5644–57 (2001).PubMedCrossRefGoogle Scholar
  30. 30.
    Asada, M. et al. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. EMBO J 18, 1223–34 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    Huang, S. et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 11, 1491–501 (2003).PubMedCrossRefGoogle Scholar
  32. 32.
    Winters, Z. E. et al. Subcellular localisation of cyclin B, Cdc2 and p21(WAF1/CIP1) in breast cancer. association with prognosis. Eur J Cancer 37, 2405–12 (2001).PubMedCrossRefGoogle Scholar
  33. 33.
    Xia, W. et al. Phosphorylation/cytoplasmic localization of p21 Cip1/WAF1 is associated with Her2/Neu overexpression and provides a novel combination predictor for worse prognosis in breast cancer patients. Clinical Cancer Research (2004).Google Scholar
  34. 34.
    Blain, S. W., Massague, J. Breast cancer banishes p27 from nucleus. Nat Med 8, 1076–8 (2002).PubMedCrossRefGoogle Scholar
  35. 35.
    Liang, J. et al. PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8, 1153–60 (2002).PubMedCrossRefGoogle Scholar
  36. 36.
    Shin, I. et al. PKB/Akt mediates cell-cycle progression by phosphorylation of p27(Kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8, 1145–52 (2002).PubMedCrossRefGoogle Scholar
  37. 37.
    Viglietto, G. et al. Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8, 1136–44 (2002).PubMedCrossRefGoogle Scholar
  38. 38.
    Clarke, R. B. p27KIP1 phosphorylation by PKB/Akt leads to poor breast cancer prognosis. Breast Cancer Res 5, 162–3 (2003).PubMedCrossRefGoogle Scholar
  39. 39.
    Honda, R., Tanaka, H., Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420, 25–7 (1997).PubMedCrossRefGoogle Scholar
  40. 40.
    Knuefermann, C. et al. HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22, 3205–12 (2003).PubMedCrossRefGoogle Scholar
  41. 41.
    Ogawara, Y. et al. Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem 277, 21843–50 (2002).PubMedCrossRefGoogle Scholar
  42. 42.
    Mayo, L. D., Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci U S A 98, 11598–603 (2001).PubMedCrossRefGoogle Scholar
  43. 43.
    Marti, U., Hug, M. Acinar and cellular distribution and mRNA expression of the epidermal growth factor receptor are changed during liver regeneration. J Hepatol 23, 318–27 (1995).PubMedGoogle Scholar
  44. 44.
    Marti, U. et al. Localization of epidermal growth factor receptor in hepatocyte nuclei. Hepatology 13, 15–20 (1991).PubMedCrossRefGoogle Scholar
  45. 45.
    Lin, S. Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3, 802–8 (2001).PubMedCrossRefGoogle Scholar
  46. 46.
    Carpenter, G. Nuclear localization and possible functions of receptor tyrosine kinases. Curr Opin Cell Biol 15, 143–8 (2003).PubMedCrossRefGoogle Scholar
  47. 47.
    Wells, A., Marti, U. Signalling shortcuts: cell-surface receptors in the nucleus? Nat Rev Mol Cell Biol 3, 697–702 (2002).PubMedCrossRefGoogle Scholar
  48. 48.
    Xie, Y., Hung, M. C. Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun 203, 1589–98 (1994).PubMedCrossRefGoogle Scholar
  49. 49.
    Offterdinger, M., Schofer, C., Weipoltshammer, K., Grunt, T. W. c-erbB-3: a nuclear protein in mammary epithelial cells. J Cell Biol 157, 929–39 (2002).PubMedCrossRefGoogle Scholar
  50. 50.
    Ni, C. Y., Murphy, M. P., Golde, T. E., Carpenter, G. Gamma-secretase cleavage and nuclear localization of ErbB-4 receptor tyrosine kinase. Science 294, 2179–81 (2001).PubMedCrossRefGoogle Scholar
  51. 51.
    Zhang, F. X. et al. Neurotrophin receptor immunostaining in the vestibular nuclei of rats. Neuroreport 14, 851–5 (2003).PubMedCrossRefGoogle Scholar
  52. 52.
    Rakowicz-Szulczynska, E. M., Herlyn, M., Koprowski, H. Nerve growth factor receptors in chromatin of melanoma cells, proliferating melanocytes, and colorectal carcinoma cells in vitro. Cancer Res 48, 7200–6 (1988).PubMedGoogle Scholar
  53. 53.
    Zwaagstra, J. C., Guimond, A., O’Connor-McCourt, M. D. Predominant intracellular localization of the type I transforming growth factor-beta receptor and increased nuclear accumulation after growth arrest. Exp Cell Res 258, 121–34 (2000).PubMedCrossRefGoogle Scholar
  54. 54.
    Maher, P. A. Nuclear Translocation of fibroblast growth factor (FGF) receptors in response to FGF-2. J Cell Biol 134, 529–36 (1996).PubMedCrossRefGoogle Scholar
  55. 55.
    Reilly, J. F., Maher, P. A. Importin beta-mediated nuclear import of fibroblast growth factor receptor: role in cell proliferation. J Cell Biol 152, 1307–12 (2001).PubMedCrossRefGoogle Scholar
  56. 56.
    Gohring, U. J. et al. Immunohistochemical detection of epidermal growth factor receptor lacks prognostic significance for breast carcinoma. J Soc Gynecol Investig 2, 653–9 (1995).PubMedCrossRefGoogle Scholar
  57. 57.
    Kamio, T., Shigematsu, K., Sou, H., Kawai, K., Tsuchiyama, H. Immunohistochemical expression of epidermal growth factor receptors in human adrenocortical carcinoma. Hum Pathol 21, 277–82 (1990).PubMedCrossRefGoogle Scholar
  58. 58.
    Lipponen, P., Eskelinen, M. Expression of epidermal growth factor receptor in bladder cancer as related to established prognostic factors, oncoprotein (c-erbB-2, p53) expression and long-term prognosis. Br J Cancer 69, 1120–5 (1994).PubMedGoogle Scholar
  59. 59.
    Toft, D., Gorski, J. A receptor molecule for estrogens: isolation from the rat uterus and preliminary characterization. Proc Natl Acad Sci U S A 55, 1574–81 (1966).PubMedCrossRefGoogle Scholar
  60. 60.
    Kuiper, G. G., Enmark, E., Pelto-Huikko, M., Nilsson, S., Gustafsson, J. A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci U S A 93, 5925–30 (1996).PubMedCrossRefGoogle Scholar
  61. 61.
    Ali, S., Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2, 101–12 (2002).PubMedCrossRefGoogle Scholar
  62. 62.
    Kuukasjarvi, T., Kononen, J., Helin, H., Holli, K., Isola, J. Loss of estrogen receptor in recurrent breast cancer is associated with poor response to endocrine therapy. J Clin Oncol 14, 2584–9 (1996).PubMedGoogle Scholar
  63. 63.
    Clarke, R. et al. Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22, 7316–39 (2003).PubMedCrossRefGoogle Scholar
  64. 64.
    Moggs, J. G., Orphanides, G. Estrogen receptors: orchestrators of pleiotropic cellular responses. EMBO Rep 2, 775–81 (2001).PubMedCrossRefGoogle Scholar
  65. 65.
    Strahl, B. D., Allis, C. D. The language of covalent histone modifications. Nature 403, 41–5 (2000).PubMedCrossRefGoogle Scholar
  66. 66.
    Neuman, E. et al. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 17, 5338–47 (1997).PubMedGoogle Scholar
  67. 67.
    Zwijsen, R. M. et al. CDK-independent activation of estrogen receptor by cyclin D1. Cell 88, 405–15 (1997).PubMedCrossRefGoogle Scholar
  68. 68.
    Wang, T. C. et al. Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369, 669–71 (1994).PubMedCrossRefGoogle Scholar
  69. 69.
    Simoncini, T. et al. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407, 538–41 (2000).PubMedCrossRefGoogle Scholar
  70. 70.
    Campbell, R. A. et al. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem 276, 9817–24 (2001).PubMedCrossRefGoogle Scholar
  71. 71.
    Kousteni, S. et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104, 719–30 (2001).PubMedGoogle Scholar
  72. 72.
    Martin, M. B., Stoica, A. Insulin-like growth factor-I and estrogen interactions in breast cancer. J Nutr 132, 3799S–3801S (2002).PubMedGoogle Scholar
  73. 73.
    Hamelers, I. H., Steenbergh, P. H. Interactions between estrogen and insulin-like growth factor signaling pathways in human breast tumor cells. Endocr Relat Cancer 10, 331–45 (2003).PubMedCrossRefGoogle Scholar
  74. 74.
    Sun, M. et al. Phosphatidylinositol-3-OH Kinase (PI3K)/AKT2, activated in breast cancer, regulates and is induced by estrogen receptor alpha (ERalpha) via interaction between ERalpha and PI3K. Cancer Res 61, 5985–91 (2001).PubMedGoogle Scholar
  75. 75.
    Castoria, G. et al. PI3-kinase in concert with Src promotes the S-phase entry of oestradiol-stimulated MCF-7 cells. EMBO J 20, 6050–9 (2001).PubMedCrossRefGoogle Scholar
  76. 76.
    Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–4 (1995).PubMedCrossRefGoogle Scholar
  77. 77.
    Gee, J. M., Robertson, J. F., Ellis, I. O., Nicholson, R. I. Phosphorylation of ERK1/2 mitogen-activated protein kinase is associated with poor response to anti-hormonal therapy and decreased patient survival in clinical breast cancer. Int J Cancer 95, 247–54 (2001).PubMedCrossRefGoogle Scholar
  78. 78.
    Nicholson, R. I. et al. Modulation of epidermal growth factor receptor in endocrine-resistant, oestrogen receptor-positive breast cancer. Endocr Relat Cancer 8, 175–82 (2001).PubMedCrossRefGoogle Scholar
  79. 79.
    Lee, A. V., Weng, C. N., Jackson, J. G., Yee, D. Activation of estrogen receptor-mediated gene transcription by IGF-I in human breast cancer cells. J Endocrinol 152, 39–47 (1997).PubMedCrossRefGoogle Scholar
  80. 80.
    Kahlert, S. et al. Estrogen receptor alpha rapidly activates the IGF-1 receptor pathway. J Biol Chem 275, 18447–53 (2000).PubMedCrossRefGoogle Scholar
  81. 81.
    Kumar, R. Another tie that binds the MTA family to breast cancer. Cell 113, 142–3 (2003).PubMedCrossRefGoogle Scholar
  82. 82.
    Lapidus, R. G., Nass, S. J., Davidson, N. E. The loss of estrogen and progesterone receptor gene expression in human breast cancer. J Mammary Gland Biol Neoplasia 3, 85–94 (1998).PubMedCrossRefGoogle Scholar
  83. 83.
    Fujita, N. et al. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113, 207–19 (2003).PubMedCrossRefGoogle Scholar
  84. 84.
    Goodsell, D. S. The molecular perspective: cadherin. Oncologist 7, 467–8 (2002).PubMedCrossRefGoogle Scholar
  85. 85.
    Okegawa, T., Li, Y., Pong, R. C., Hsieh, J. T. Cell adhesion proteins as tumor suppressors. J Urol 167, 1836–43 (2002).PubMedCrossRefGoogle Scholar
  86. 86.
    Imhof, B. A., Vollmers, H. P., Goodman, S. L., Birchmeier, W. Cell-cell interaction and polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell 35, 667–75 (1983).PubMedCrossRefGoogle Scholar
  87. 87.
    Behrens, J., Mareel, M. M., Van Roy, F. M., Birchmeier, W. Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 108, 2435–47 (1989).PubMedCrossRefGoogle Scholar
  88. 88.
    Thiery, J. P. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442–54 (2002).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hui-Wen Lo
    • 1
  • Shao-Chun Wang
    • 1
  • Mien-Chie Hung
    • 2
  1. 1.Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.The University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations