Globus-Based Grid Computing Simulations of Action Potential Propagation on Cardiac Tissues

  • José M. Alonso
  • Vicente Hernández
  • Germán Moltó
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3149)

Abstract

With the advent of Grid technologies, the study of the electrical activity of the heart, by means of concurrent parametric simulations of the action potential propagation on cardiac tissues, can be greatly benefited. Studies of the electrical behaviour, such as late ischemia require the execution of multiple computational and memory intensive parametric simulations. This paper describes the integration, into a Grid infrastructure, of a parallel MPI-based system for the simulation of action potential propagation on a three-dimensional parallelepiped-modelled cardiac tissue. Developed upon the Globus Toolkit, it features state-of-the-art capabilities such as data compression, simulation failure recovery, and the combination of parallel execution on distributed resources, what has enabled an outstanding increase in research productivity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Luo, C.H., Rudy, Y.: A Dynamic Model of the Cardiac Ventricular Action Potential. I Simulations of Ionic Currents and Concentration Changes. Circulation Research 74, 1071–1096 (1994)Google Scholar
  2. 2.
    Vigmond, E.J., Aguel, F., Trayanova, N.A.: Computational Techniques for Solving the Bidomain Equations in Three Dimensions. IEEE Transactions on Biomedical Engineering 49, 1260–1269 (2002)CrossRefGoogle Scholar
  3. 3.
    Alonso, J.M., Ferrero Jr., J.M., Hernández, V., Moltó, G., Monserrat, M., Saiz, J.: High Performance Cardiac Tissue Electrical Activity Simulation on a Parallel Environment. In: Proceedings of the First European HealthGrid Conference, pp. 84–91 (2003)Google Scholar
  4. 4.
    Lawson, C.L., Hanson, R.J., Kincaid, D., Krogh, F.T.: Basic Linear Algebra Subprograms for FORTRAN Usage. ACM Trans. Math. Soft. 5, 308–323 (1979)MATHCrossRefGoogle Scholar
  5. 5.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide. Third edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)Google Scholar
  6. 6.
    Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A High-Performance, Portable, Implementation of the MPI Message Passing Interface Standard. Parallel Computing 22, 789–828 (1996)MATHCrossRefGoogle Scholar
  7. 7.
    Gropp, W.D., Lusk, E.: User’s Guide for MPICH, a Portable Implementation of MPI. Mathematics and Computer Science Division, Argonne National Laboratory (1996)Google Scholar
  8. 8.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: An Open Grid Services Architecture for the Distributed Systems Integration. Infrastructure WG, Global Grid Forum (2002) Google Scholar
  9. 9.
    Foster, I., Kesselman, C.: Globus: A Metacomputing Infrastructure Toolkit. Intl. J. Supercomputer Applications 11, 115–128 (1997)CrossRefGoogle Scholar
  10. 10.
    Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution on Grids. Software Practice and Experience (2004) (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • José M. Alonso
    • 1
  • Vicente Hernández
    • 1
  • Germán Moltó
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations