Visual Data Rectangular Memory

  • Georgi Kuzmanov
  • Georgi Gaydadjiev
  • Stamatis Vassiliadis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3149)

Abstract

We focus on the parallel access of randomly aligned rectangular blocks of visual data. As an alternative of traditional linearly addressable memories, we suggest a memory organization based on an array of memory modules. A highly scalable data alignment scheme incorporating module assignment functions and a new generic addressing function are proposed. To enable short critical paths and to save hardware resources, the addressing function implicitly embeds the module assignment functions and it is separable. A corresponding design is evaluated and compared to existing schemes and is found to be cost-effective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Budnik, P., Kuck, D.J.: The organization and use of parallel memories. IEEE Transactions on Computers 20(12), 1566–1569 (1971)MATHCrossRefGoogle Scholar
  2. 2.
    ISO/IEC JTC11/SC29/WG11, N3312. MPEG-4 video verification model version 16.0 Google Scholar
  3. 3.
    Kim, K., Prasanna, V.K.: Latin squares for parallel array access. IEEE Transactions on Parallel and Distributed Systems 4(4), 361–370 (1993)CrossRefGoogle Scholar
  4. 4.
    Kloos, H., Wittenburg, J., Hinrichs, W., Lieske, H., Friebe, L., Klar, C., Pirsch, P.: HiPARDSP 16, a scalable highly parallel DSP core for system on a chip: video and image processing applications. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, Orlando, Florida, USA, May 2002, vol. 3, pp. 3112–3115. IEEE, Los Alamitos (2002)Google Scholar
  5. 5.
    Kneip, J., Ronner, K., Pirsch, P.: A data path array with shared memory as core of a high performance DSP. In: Proceedings of the International Conference on Application Specific Array Processors, San Francisco, CA, USA, August 1994, pp. 271–282 (1994)Google Scholar
  6. 6.
    Kogge, P.M.: The Architecture of Pipelined Computers. McGraw-Hill, New York (1981)MATHGoogle Scholar
  7. 7.
    Kuzmanov, G., Gaydadjiev, G.N., Vassiliadis, S.: Multimedia rectangularly and separably addressable memory. Technical Report CE-TR-2004-01, TU Delft, Delft (January 2004), http://ce.et.tudelft.nl/publications.php
  8. 8.
    Kuzmanov, G., Vassiliadis, S., van Eijndhoven, J.: A 2D Addressing Mode forMultimedia Applications. In: Deprettere, F., Teich, J., Vassiliadis, S. (eds.) SAMOS 2001. LNCS, vol. 2268, pp. 291–306. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Lawrie, D.H.: Access and alignment of data in an array processor. IEEE Transactions on Computers C-24(12), 1145–1155 (1975)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Lee, D.: Scrambled Storage for Parallel Memory Systems. In: Proc.IEEE International Symposium on Computer Architecture, Honolulu, HI, USA, May 1988, pp. 232–239 (1988)Google Scholar
  11. 11.
    Park, J.W.: An efficient buffer memory system for subarray access. IEEE Transactions on Parallel and Distributed Systems 12(3), 316–335 (2001)CrossRefGoogle Scholar
  12. 12.
    van Voorhis, D.C., Morrin, T.H.: Memory systems for image processing. IEEE Transactions on Computers C-27(2), 113–125 (1978)CrossRefGoogle Scholar
  13. 13.
    Wittenburg, J.P., Ohmacht, M., Kneip, J., Hinrichs, W., Pirsh, P.: HiPAR-DSP: a parallel VLIW RISC processor for real time image processing applications. In: 3rd International Conference on Algorithms and Architectures for Parallel Processing, ICAPP 1997, Melbourne, Vic., Australia, December 1997, pp. 155–162 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Georgi Kuzmanov
    • 1
  • Georgi Gaydadjiev
    • 1
  • Stamatis Vassiliadis
    • 1
  1. 1.Computer Engineering Lab, Microelectronics and Computer Engineering Dept., EEMCSTU DelftDelftThe Netherlands

Personalised recommendations