Advertisement

Selfish Unsplittable Flows

  • Dimitris Fotakis
  • Spyros Kontogiannis
  • Paul Spirakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3142)

Abstract

What is the price of anarchy when unsplittable demands are routed selfishly in general networks with load-dependent edge delays? Motivated by this question we generalize the model of [14] to the case of weighted congestion games. We show that varying demands of users crucially affect the nature of these games, which are no longer isomorphic to exact potential games, even for very simple instances. Indeed we construct examples where even a single-commodity (weighted) network congestion game may have no pure Nash equilibrium.

On the other hand, we study a special family of networks (which we call the l-layered networks) and we prove that any weighted congestion game on such a network with resource delays equal to the congestions, possesses a pure Nash Equilibrium. We also show how to construct one in pseudo-polynomial time. Finally, we give a surprising answer to the question above for such games: The price of anarchy of any weighted ℓ-layered network congestion game with m edges and edge delays equal to the loads, is \(\Theta\left(\frac{\log m}{\log\log m}\right)\).

Keywords

Nash Equilibrium Mixed Strategy Layered Network Maximum Latency Delay Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, 2nd edn. John Wiley and Sons, Inc., Chichester (1993)zbMATHGoogle Scholar
  2. 2.
    Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press, New Haven (1956)Google Scholar
  3. 3.
    Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms. In: Proc. of the 34th ACM Symp. on Theory of Computing (STOC 2002), pp. 287–296 (2002)Google Scholar
  4. 4.
    Czumaj, A., Vöcking, B.: Tight bounds for worst-case equilibria. In: Proc. of the 13th ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), pp. 413–420 (2002)Google Scholar
  5. 5.
    Dorn, W.S.: Duality in quadratic programming. Quarterly of Applied Mathematics 18(2), 155–162 (1960)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Even-Dar, E., Kesselman, A., Mansour, Y.: Convergence time to nash equilibria. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 502–513. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: Proc. of the 36th ACM Symp. on Theory of Computing, STOC 2004 (2004)Google Scholar
  8. 8.
    Feldmann, R., Gairing, M., Lücking, T., Monien, B., Rode, M.: Nashification and the coordination ratio for a selfish routing game. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 514–526. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Spirakis, P.: Extreme nash equilibria. In: Blundo, C., Laneve, C. (eds.) ICTCS 2003. LNCS, vol. 2841, pp. 1–20. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Hochbaum, D., Shmoys, D.: Apolynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach. SIAM J. Comput. 17(3), 539–551 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Koutsoupias, E., Mavronicolas, M., Spirakis, P.: Approximate equilibria and ball fusion. ACM Transactions on Computer Systems 36, 683–693 (2003)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A New Model for Selfish Routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  16. 16.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M., Spirakis, P., Vrto, I.: Which is theworst-case nash equilibrium? In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 551–561. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Mavronicolas, M., Spirakis, P.: The price of selfish routing. In: Proc. of the 33rd ACM Symp. on Theory of Computing (STOC 2001), pp. 510–519 (2001)Google Scholar
  18. 18.
    Milchtaich, I.: Congestion games with player-specific payoff functions. Games and Economic Behavior 13, 111–124 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Monderer, D., Shapley, L.: Potential games. Games and Economic Behavior 14, 124–143 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  21. 21.
    Rosenthal, R.W.: A class of games possessing pure-strategy nash equilibria. International Journal of Game Theory 2, 65–67 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Roughdarden, T., Tardos, Ë.: How bad is selfish routing? J. Assoc. Comput. Mach. 49(2), 236–259 (2002)Google Scholar
  23. 23.
    Roughgarden, T.: The price of anarchy is independent of the network topology. In: Proc. of the 34th ACM Symp. on Theory of Computing (STOC 2002), pp. 428–437 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dimitris Fotakis
    • 1
    • 2
  • Spyros Kontogiannis
    • 1
    • 3
  • Paul Spirakis
    • 1
  1. 1.Research Academic Computer Technology InstitutePatrasGreece
  2. 2.Dept. of Mathematical, Physical and Computational SciencesAristotle University of ThessalonikiThessalonikiGreece
  3. 3.Dept. of Computer ScienceUniversity of IoanninaIoanninaGreece

Personalised recommendations