SIE – Intelligent Web Proxy Framework

  • Grzegorz Andruszkiewicz
  • Krzysztof Ciebiera
  • Marcin Gozdalik
  • Cezary Kaliszyk
  • Mateusz Srebrny
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3140)

Abstract

In this paper we would like to present and describe SIE, a transparent, intelligent Web proxy framework. Its aim is to provide efficient and robust platform for implementing various ideas in broad area of Web Mining. It enables the programmer to easily and quickly write modules that improve pages on that site according to personal characteristics of the particular user. SIE provides many features including user identification, logging of users’ sessions, handling all necessary protocols, etc. SIE is implemented in OCaml – a functional programming language – and has been released on GPL.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules between Sets of Items in Large Databases. In: Proceedings of SIGMOD 1993, pp. 207–216 (1993)Google Scholar
  2. 2.
    Anderson, C., Domingos, P., Weld, D.: Adaptive web navigation for wireless devices (2001)Google Scholar
  3. 3.
    Anderson, C., Domingos, P., Weld, D.: Relational markov models and their application to adaptive web navigation (2002)Google Scholar
  4. 4.
    Anderson, C.R.: A Machine Learning Approach to Web Personalization. PhD thesis, University of Washington (2002)Google Scholar
  5. 5.
    Barrett, R., Maglio, P.P.: Intermediaries: New places for producing and manipulating web content. In: World Wide Web (1999)Google Scholar
  6. 6.
    Barrett, R., Maglio, P.P., Kellem, D.C.: How to personalize the web. In: Proceedings of the Conference on Human Factors in Computing Systems CHI 1997 (1997)Google Scholar
  7. 7.
    Cadez, I.V., Heckerman, D., Meek, C., Smyth, P., White, S.: Visualization of navigation patterns on a web site using model-based clustering. Knowledge Discovery and Data Mining, 280–284 (2000)Google Scholar
  8. 8.
    Chakrabarti, S.: Mining the Web. Morgan Kaufmann Publishers, San Francisco (2003)Google Scholar
  9. 9.
    Cooley, R.: Web Usage Mining: Discovery and Application of Interesting Patterns from Web Data. PhD thesis, University of Minnesota (2000)Google Scholar
  10. 10.
    Deshpande, M., Karypis, G.: Selective Markov Models for Predicting Web-Page Accesses (2001)Google Scholar
  11. 11.
    Karypis, G., Han, E.-H.: Concept indexing:A fast dimensionality reduction algorithm with applications to document retrieval and categorization. Technical report tr-00-0016, University of Minnesota (2000)Google Scholar
  12. 12.
    Mobasher, B., Dai, H., Tao, M.: Discovery and evaluation of aggregate usage profiles for web personalization (2002)Google Scholar
  13. 13.
    Perkowitz, M.: Adaptive Web Sites: Cluster Mining and Conceptual Clustering for Index Page Synthesis. PhD thesis, University of Washington (2001)Google Scholar
  14. 14.
    Perkowitz, M., Etzioni, O.: Adaptive Web Sites: an AI Challenge. In: IJCAI, vol. 1, pp. 16–23 (1997)Google Scholar
  15. 15.
    Perkowitz, M., Etzioni, O.: Towards adaptive Web sites: conceptual framework and case study. Computer Networks (Amsterdam, Netherlands: 1999) 31(11-16), 1245–1258 (1999)Google Scholar
  16. 16.
    Pirolli, P., Pitkow, J., Rao, R.: Silk from a sow’s ear: Extracting usable structures from the web. In: CHI 1996, Vancouver (1996)Google Scholar
  17. 17.
    W3C. Web characterization activity, http://www.w3.org/WCA

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Grzegorz Andruszkiewicz
    • 1
  • Krzysztof Ciebiera
    • 1
  • Marcin Gozdalik
    • 1
  • Cezary Kaliszyk
    • 1
  • Mateusz Srebrny
    • 1
  1. 1.Institute of InformaticsWarsaw UniversityWarsawPoland

Personalised recommendations