Self-Stabilization and Behavioral Diversity of Embodied Adaptive Locomotion

  • Fumiya Iida
  • Rolf Pfeifer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3139)


Locomotion is of fundamental importance in understanding adaptive behavior. In this paper we present two case studies of robot locomotion that demonstrate how higher level of behavioral diversity can be achieved while observing the principle of cheap design. More precisely, it is shown that, by exploiting the dynamics of the system-environment interaction, very simple controllers can be designed which is essential to achieve rapid locomotion. Special consideration must be given to the choice of body materials. We conclude with some speculation about the importance of locomotion for understanding cognition.


Behavioral Diversity Locomotion Behavior Body Dynamic Forward Velocity Quadruped Robot 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, R.A.: A robot that walks: emergent behaviors from a carefully evolved network. Neural Computation 1(2), 253–262 (1989)CrossRefGoogle Scholar
  2. 2.
    Vukobratovic, M., Stepanenko, J.: On the stability of anthropomorphic systems. Mathematical Biosciences 15, 1–37 (1972)MATHCrossRefGoogle Scholar
  3. 3.
    Yamaguchi, J., Soga, E., Inoue, S., Takanishi, A.: Development of a bipedal humanoid robot - control method of whole body cooperative dynamic biped walking. In: Proc. IEEE Int. Conference on Robotics and Automation, pp.368-374 (1999)Google Scholar
  4. 4.
    Hirose, M., Haikawa, Y., Takenaka, T., Hirai, K.: Development of humanoid robot ASIMO. In: Proc. Int. Conference on Intelligent Robots and Systems (2001)Google Scholar
  5. 5.
    Loeffler, K., Gienger, M., Pfeiffer, F.: Sensor and control design of a dynamically stable biped robot. In: ICRA 2003, pp. 484–490 (2003)Google Scholar
  6. 6.
    Arikawa, K., Hirose, S.: Development of quadruped walking robot TITANVIII. In: Proceedings of International Conference on Intelligent Robots and Systems (IRO 1996), pp. 208–214 (1996)Google Scholar
  7. 7.
    Collins, S.H., Wisse, M., Ruina, A.: A three-dimentional passive-dynamic walking robot with two legs and knees. International Journal of Robotics Research 20, 607–615 (2001)CrossRefGoogle Scholar
  8. 8.
    McGeer, T.: Passive dynamic walking. International Journal of Robotics Research 9, 62–82 (1990)CrossRefGoogle Scholar
  9. 9.
    Wisse, M., van Frankenhuyzen, J.: Design and construction of MIKE: A 2D autonomous biped based on passive dynamic walking. In: Proceedings of International Symposium of Adaptive Motion and Animals and Machines, AMAM 2003 (2003)Google Scholar
  10. 10.
    Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge (1999)Google Scholar
  11. 11.
    Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65, 147–159 (1991)MATHCrossRefGoogle Scholar
  12. 12.
    Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. Int. Journal of Robotics Research 22(3-4), 187–202 (2003)CrossRefGoogle Scholar
  13. 13.
    Ishiguro, A., Ishimaru, K., Hayakawa, K., Kawakatsu, T.: Toward a ”wellbalanced” design: A robotic case study -How should control and body dynamics be coupled? In: Proc. of The 2nd International Symposium on Adaptive Motion of Animal and Machines (2003)Google Scholar
  14. 14.
    Kubow, T.M., Full, R.J.: The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners. Phil. Trans. R. Soc. Lond. B 354, 849–861 (1999)CrossRefGoogle Scholar
  15. 15.
    Raibert, H.M.: Legged robots that balance. MIT Press, Cambridge (1986)Google Scholar
  16. 16.
    Buehler, M.: Dynamic locomotion with one, four and six-legged robots. Journal of the Robotics Society of Japan 20(3), 15–20 (2002)MathSciNetGoogle Scholar
  17. 17.
    Alexander, R.: McN.: Three uses for springs in legged locomotion. The International Journal of Robotic Research 9(2), 53–61 (1990)CrossRefGoogle Scholar
  18. 18.
    Seyfarth, A., Geyer, H., Guether, M., Blickhan, R.: A movement criterion for running. J. Biomech. 35(5), 649–655 (2002)CrossRefGoogle Scholar
  19. 19.
    Iida, F.: Exploiting friction for a hopping robot. In: Proc. of Adaptive Motion of Animals and Machines (2003)Google Scholar
  20. 20.
    Iida, F., Dravid, R., Paul, C.: Design and control of a pendulum driven hopping robot. In: Proceedings of International Conference on Intelligent Robots and Systems 2002 (IROS 2002), pp. 2141–2146 (2002)Google Scholar
  21. 21.
    Paul, C., Dravid, R., Iida, F.: Control of lateral bounding for a pendulum driven hopping robot. In: Proc. of 5th International Conference on Climbing and Waling Robots (CLAWAR 2002), pp. 333–340 (2002)Google Scholar
  22. 22.
    Iida, F., Pfeifer, R.: Ceap rapid locomotion of a quadruped robot: Selfstabilization of bounding gait. In: Groen, F., et al. (eds.) Proc. of Intelligent Autonomous Systems, vol. 8, pp. 642–649. IOS Press, Amsterdam (2003)Google Scholar
  23. 23.
    Cruse, H., Bartling, C.H., Brunn, D.E., Dean, J., Dreifert, M., Kindermann, T., Schmitz, J.: Walking: A complex behavior controlled by simple systems. Adaptive Behavior 3(4), 385–418 (1995)CrossRefGoogle Scholar
  24. 24.
    Herr, H.M., McMahon, T.A.: A trotting horse model. The International Journal of Robotics Research 19(6), 566–581 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Fumiya Iida
    • 1
  • Rolf Pfeifer
    • 1
  1. 1.Artificial Intelligence Laboratory, Department of InformaticsUniversity of ZurichZurichSwitzerland

Personalised recommendations