Approximating Additive Distortion of Embeddings into Line Metrics

  • Kedar Dhamdhere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3122)

Abstract

We consider the problem of fitting metric data on n points to a path (line) metric. Our objective is to minimize the total additive distortion of this mapping. The total additive distortion is the sum of errors in all pairwise distances in the input data. This problem has been shown to be NP-hard by [13]. We give an O(logn) approximation for this problem by using Garg et al.’s [10] algorithm for the multi-cut problem as a subroutine. Our algorithm also gives an O(log1/pn) approximation for the Lp norm of the additive distortion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwala, R., Bafna, V., Farach, M., Narayanan, B.O., Paterson, M., Thorup, M.: On the approximability of numerical taxonomy (fitting distances by tree metrics). In: Symposium on Discrete Algorithms, pp. 365–372 (1996)Google Scholar
  2. 2.
    Badoiu, M., Indyk, P., Rabinovich, Y.: Approximate algorithms for embedding metrics into low-dimensional spaces. (2003) (Unpublished manuscript)Google Scholar
  3. 3.
    Barthélemy, J.-P., Guénoche, A.: Trees and proximity representations. Wiley, New York (1991)MATHGoogle Scholar
  4. 4.
    Blum, A., Chawla, S., Karger, D., Meyerson, A., Minkoff, M., Lane, T.: Approximation algorithms for orienteering and discounted-reward tsp. In: IEEE Symposium on Foundations of Computer Science (2003)Google Scholar
  5. 5.
    Cavalli-Sforza, L., Edwards, A.: Phylogenetic analysis models and estimation procedures. American Journal of Human Genetics 19, 233–257 (1967)Google Scholar
  6. 6.
    Deza, M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)MATHGoogle Scholar
  7. 7.
    Dhamdhere, K., Gupta, A., Ravi, R.: Approximating average distortion for embeddings into line. In: Symposium on Theoretical Aspects of Computer Science, STACS (2004)Google Scholar
  8. 8.
    Farach, M., Kannan, S., Warnow, T.: A robust model for finding optimal evolutionary trees. Algorithmica 13, 155–179 (1995)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman, San Fransisco (1979)MATHGoogle Scholar
  10. 10.
    Garg, N., Vazirani, V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM Journal on Computing 25(2), 235–251 (1996)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Håstad, J., Ivansson, L., Lagergren, J.: Fitting points on the real line and its application to RH mapping. In: European Symposium on Algorithms, pp. 465–476 (1998)Google Scholar
  12. 12.
    Klein, P., Agarwal, A., Ravi, R., Rao, S.: Approximation through multicommodity flow. In: IEEE Symposium on Foundations of Computer Science, pp. 726–737 (1990)Google Scholar
  13. 13.
    Saxe, J.B.: Embeddability of graphs into k-space is strongly np-hard. In: Allerton Conference in Communication, Control and Computing, pp. 480–489 (1979)Google Scholar
  14. 14.
    Sneath, P.H.A., Sokal, R.R.: Numerical Taxonomy. W. H. Freeman, San Fransisco (1973)MATHGoogle Scholar
  15. 15.
    Waterman, M.S., Smith, T.S., Singh, M., Beyer, W.A.: Additive evolutionary trees. Journal of Theoretical Biology 64, 199–213 (1977)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kedar Dhamdhere
    • 1
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations