It is exponentially unlikely that a sparse random graph or hypergraph is connected, but such graphs occur commonly as the giant components of larger random graphs. This simple observation allows us to estimate the number of connected graphs, and more generally the number of connected d-uniform hypergraphs, on n vertices with m=O(n) edges. We also estimate the probability that a binomial random hypergraph H d (n,p) is connected, and determine the expected number of edges of H d (n,p) conditioned on its being connected. This generalizes prior work of Bender, Canfield, and McKay [2] on the number of connected graphs; however, our approach relies on elementary probabilistic methods, extending an approach of O’Connell, rather than using powerful tools from enumerative combinatorics. We also estimate the probability for each t that, given k=O(n) balls in n bins, every bin is occupied by at least t balls.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barraez, D., Boucheron, S., Fernandez de la Vega, W.: On the fluctuations of the giant component. Combinatorics, Probability and Computing 9, 287–304 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bender, E.A., Canfield, E.R., McKay, B.D.: The asymptotic number of labeled connected graphs with a given number of vertices and edges. Random Structures & Algorithms 1, 127–169 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bender, E.A., Canfield, E.R., McKay, B.D.: Asymptotic properties of labeled connected graphs. Random Structures & Algorithms 3, 183–202 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Engel, A., Monasson, R., Hartmann, A.: On large deviation properties of Erdös- Rényi random graphs. Preprint rXiv, cond-mat/0311535 (2003) Google Scholar
  5. 5.
    Feller, W.: Introduction to probability theory and its applications. Wiley, Chichester (1968)zbMATHGoogle Scholar
  6. 6.
    Janson, S., Luczak, T., Ruciński, A.: Random Graphs. Wiley, Chichester (2000)zbMATHGoogle Scholar
  7. 7.
    Karonski, M., Luczak, T.: The phase transition in a random hypergraph. J. Comput. Appl. Math. 142, 125–135 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Karonski, M., Luczak, T.: The number of connected sparsely edged uniform hypergraphs. Discrete Math. 171, 153–168 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Luczak, T.: On the number of sparse connected graphs. Random Structures & Algorithms 1, 171–173 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Moser, L., Wyman, M.: Stirling numbers of the second kind. Duke Mathematical Journal 25, 29–43 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    O’Connell, N.: Some large deviation results for sparse random graphs. Prob. Th. Relat. Fields 110, 277–285 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pittel, B., Wormald, N.C.: Counting connected graphs inside out. J. Combinatorial Theory Series B (to appear) Google Scholar
  13. 13.
    Schmidt-Pruzan, J., Shamir, E.: Component structure in the evolution of random hypergraphs. Combinatorica 5, 81–94 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Temme, N.M.: Asymptotic estimates of Stirling numbers. Studies in Applied Mathematics 89, 233–243 (1993)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Amin Coja-Oghlan
    • 1
  • Cristopher Moore
    • 2
  • Vishal Sanwalani
    • 2
  1. 1.Institut für InformatikHumboldt-Universität zu BerlinBerlinGermany
  2. 2.University of New MexicoAlbuquerqueUSA

Personalised recommendations