Neighborhood-Based Topology Recognition in Sensor Networks

  • S. P. Fekete
  • A. Kröller
  • D. Pfisterer
  • S. Fischer
  • C. Buschmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3121)

Abstract

We consider a crucial aspect of self-organization of a sensor network consisting of a large set of simple sensor nodes with no location hardware and only very limited communication range. After having been distributed randomly in a given two-dimensional region, the nodes are required to develop a sense for the environment, based on a limited amount of local communication. We describe algorithmic approaches for determining the structure of boundary nodes of the region, and the topology of the region. We also develop methods for determining the outside boundary, the distance to the closest boundary for each point, the Voronoi diagram of the different boundaries, and the geometric thickness of the network. Our methods rely on a number of natural assumptions that are present in densely distributed sets of nodes, and make use of a combination of stochastics, topology, and geometry. Evaluation requires only a limited number of simple local computations.

ACM classification: C.2.1 Network architecture and design; F.2.2 Nonnumerical algorithms and problems; G.3 Probability and statistics

MSC classification: 68Q85, 68W15, 62E17

Keywords

Sensor networks smart dust location awareness topology recognition neighborhood-based computation boundary recognition Voronoi regions geometric properties of sensor networks random distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AGY04]
    Aspnes, J., Goldenberg, D., Yang, Y.R.: On the computational complexity of sensor network localization. In: Proc. ALGOSENSORS (2004)Google Scholar
  2. [AR97]
    Appel, M.J.B., Russo, R.P.: The maximum vertex degree of a graph on uniform points in [0; 1]d. Adv. Applied Probability 29, 567–581 (1997)MATHCrossRefMathSciNetGoogle Scholar
  3. [Bea03]
    Beal, J.: Near-optimal distributed failure circumscription. Technical Report AIM-2003-17, MIT Artificial Intelligence Laboratory (2003) Google Scholar
  4. [BK98]
    Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comp. Geom. Theory Appl. 9(1-2), 3–24 (1998)MATHMathSciNetGoogle Scholar
  5. [BKKM96]
    Brunekreef, J., Katoen, J.-P., Koymans, R., Mauw, S.: Design and analysis of dynamic leader election protocols in broadcast networks. Distributed Computing 9(4), 157–171 (1996)CrossRefGoogle Scholar
  6. [CCHH01]
    Čapkun, S., Hamdi, M., Hubaux, J.: GPS-free positioning in mobile ad-hoc networks. In: Proc. IEEE HICSS-34, vol. 9, p. 9008 (2001)Google Scholar
  7. [DPG01]
    Doherty, L., Pister, K.S.J., El Ghaoui, L.: Convex position estimation in wireless sensor networks. In: Proc. IEEE Infocom 2001, pp. 1655–1663 (2001)Google Scholar
  8. [FGG04]
    Fang, Q., Gao, J., Guibas, L.J.: Locating and bypassing routing holes in sensor networks. In: Proceedings IEEE Infocom (2004)Google Scholar
  9. [GHS83]
    Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight spanning trees. ACM Transactions on Programming Languages and Systems 5(1), 66–77 (1983)MATHCrossRefGoogle Scholar
  10. [HT03]
    Huang, C.-F., Tsent, Y.-C.: The coverage problem in a wireless sensor network. In: Proc. ACM Int. WSNA, pp. 115–121 (2003)Google Scholar
  11. [PBDT03]
    Priyantha, N.B., Balakrishnan, H., Demaine, E., Teller, S.: Anchor-free distributed localization in sensor networks. Technical Report MIT-LCSTR- 892, MIT Laboratory for Computer Science (April 2003) Google Scholar
  12. [SB03]
    Stachniss, C., Burgard, W.: Mapping and exploration with mobile robots using coverage maps. In: Proc. IEEE/RSJ Int. Conf. IROS (2003)Google Scholar
  13. [SR02]
    Sundaram, N., Ramanathan, P.: Connectivity-based location estimation scheme for wireless ad hoc networks. In: Proc. IEEE Globecom 2002, vol. 1, pp. 143–147 (2002)Google Scholar
  14. [SRL02]
    Savarese, C., Rabaey, J.M., Langendoen, K.: Robust positioning algorithms for distributed ad-hoc wireless sensor networks. In: Proc. 2002 USENIX Ann. Tech. Conf., pp. 317–327 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • S. P. Fekete
    • 1
  • A. Kröller
    • 1
  • D. Pfisterer
    • 2
  • S. Fischer
    • 2
  • C. Buschmann
    • 2
  1. 1.Department of Mathematical OptimizationBraunschweig University of TechnologyBraunschweigGermany
  2. 2.Institute of Operating Systems and Computer NetworksBraunschweig University of TechnologyBraunschweigGermany

Personalised recommendations